ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ИМЕНИ ПРОФЕССОРА В.Ф. ВОЙНО-ЯСЕНЕЦКОГО» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Кафедра Анестезиологии и реаниматологии ИПО

Реферат на тему: «Методика выполнения СМА парамедианным доступом»

Выполнил: ординатор 1 года кафедры анестезиологии и реаниматологии ИПО Ларина Ирина Олеговна

Ввеление

Спинномозговая, эпидуральная и каудальная анестезия предполагают введение местного анестетика в непосредственной близости от спинного мозга, поэтому их объединяют понятием "центральная блокада". Хотя эти виды анестезии принципиально близки, каждый из них имеет свои анатомические, физиологические и клинические особенности. Кроме того, для проведения каждой из них требуется особое оборудование. Спинномозговая, эпидуральная и каудальная анестезия рассматриваются по отдельности, что позволяет лучше понять как их различия, так и сходство. Особое внимание уделено вопросу о преимуществах регионарной анестезии перед общей, в том числе в отношении интраоперационной кровопотери, тромбозов глубоких вен и спутанности сознания у пожилых людей в послеоперационном периоде.

Анатомия

Позвоночник обеспечивает стабильность и защиту спинного мозга, а также опору при прямохождении. Ниже представлены особенности анатомии позвоночника, строения и кровоснабжения спинного мозга.

Позвоночник

Внешние анатомические ориентиры спины позволяют идентифицировать подлежащие структуры. Остистый отросток СІІ определяется непосредственно ниже затылочного бугра. Границу между шейным и грудным отделом позвоночника легко определить, пропальпировав остистый отросток СVII, который называют выступающим позвонком (vertebra prominens). Грудные позвонки определяются по соответствующим ребрам. Линия, проведенная через крылья подвздошных костей, обычно проходит между остистыми отростками LIV и LV. У астеничных людей можно пропальпировать крестец, при этом крестцовая щель ощущается как ямка ромбовидной или неправильной формы, рас- положенная между ягодицами или сразу над межъягодичной складкой. Позвоночник, состоящий из 33 позвонков, по анатомическим признакам делится на 5 отделов: шейный, грудной, поясничный, крестцовый и копчиковый. Как можно заметить на рис. 16-1, позвоночник не занимает строго вертикальное положение, а изогнут в сагиттальной плоскости: в шейном и поясничном отделах изгибы обращены выпуклостью вперед, а в грудном и крестцовом отделах -выпуклостью назад. При спинномозговой анестезии это имеет практическое значение, позволяя предсказать влияние

гравитации и положения тела больного на распространение раствора местного анестетика. Позвонки, независимо от принадлежности их к какому-либо отделу позвоночника, имеют общий план строения, знание которого необходимо для правильного введения иглы при спинномозговой или эпидуральной анестезии. Структурной основой позвонка является его тело. Тела смежных позвонков вместе с расположенным между ними межпозвоночным диском соединяются и удерживаются мощными фиброзными тяжами передней и задней продольными связками, которые обеспечивают стабильность позвоночника вентрально. Костные структуры и связочный аппарат формируют позвоночный канал и обеспечивают дорсальную стабильность позвоночника. Кзади от тела позвонка находятся две пластинки, которые прикрепляются к телу с помощью пары ножек. Пластинки соединяются и сливаются между собой по срединной линии. Овальное отверстие, ограниченное ножками и пластинками, называется позвоночным отверстием. Прилежащие друг к другу позвоночные отверстия формируют позвоночный канал, который является вместилищем спинного мозга, его оболочек и сосудов. Каждая ножка позвонка имеет две вырезки, нижнюю и верхнюю. Нижняя вырезка глубже, чем верхняя. При соединении смежных позвонков друг с другом нижняя и верхняя вырезки образуют справа и слева межпозвоночное отверстие, через которое выходит соответствующий спинномозговой нерв. Верхние и нижние суставные отростки смежных позвонков образуют дугоотростчатые (или межпозвоночные) суставы. Латеральнее от дугоотростчатого сустава располагается поперечный отросток, который служит местом для прикрепления мышц. Остистые отростки выступают по средней линии спины и соединяются связками, которые обеспечивают стабильность по задней поверхности позвоночника.

Самой поверхностной (и самой задней) является надостистая связка, соединяющая верхушки остистых отростков. Глубже и вентральнее находит-ся межостистая связка, расположенная между остистыми позвонками. Вентральнее межостистой связки расположена желтая связка, которая соединяет соседние пластинки и прилежит непосредственно к твердой мозговой оболочке. Эпидуральное пространство находится между желтой связкой и твердой мозговой оболочкой, латерально оно сливается с дуральными муфтами, окружающими места выхода спинномозговых нервов. Между твердой мозговой и паутинной оболочками расположено еще одно пространство субдуральное. В отличие от эпидурального простран-ства, которое заканчивается на уровне большого затылочного отверстия, субдуральное пространство спинного мозга сливается с аналогичным про-странством в полости черепа.

Регионарные отличия в структуре позвонков необходимо учитывать для того, чтобы правильно рассчитать угол введения пункционной иглы, избрать срединный или околосрединный доступ. Внутри поперечных отростков шейных позвонков имеются отверстия для позвоночной артерии. В шейном отделе, по сравнению с остальными, тела позвонков самые маленькие, а позвоночный канал наиболее широкий. Сагиттальный разрез через поясничные позвонки. Б. Общий план строения позвонка Остистые отростки расположены почти горизонтально. Грудные позвонки идентифицируются по сочленениям соответствующих ребер с поперечными отростками. В отличие от горизонтально расположенных плос-костей щелей дугоотростчатых суставов, остистые отростки грудных позвонков наклонены вниз и частично перекрывают друг друга. Тела поясничных позвонков самые массивные, их остистые отростки расположены почти горизонтально. Пять крестцовых позвонков в большей или меньшей степени срастаются, образуя крестец. На поверхности крестца

открываются задние и передние крестцовые отверстия, предназначенные для выхода спинномозговых нервов, а также крестцовая щель. **Копчик** состоит из 3-4 рудиментарных сросшихся позвонков и не представляет практического интереса для анестезиолога.

Спинной мозг

Спинной мозг находится в позвоночном канале. Покрывающие его ткани, включая твердую мозговую оболочку, жировую ткань и венозные сплетения, называются мозговыми оболочками, meninges (рис. 16-4). Спинной мозг окружен твердой мозговой оболочкой, представляющей собой плотную, непроницаемую для жидкости трубку, защищающую спинной мозг и содержащую цереброспинальную жидкость. Снаружи от твердой мозговой оболочки находится эпидуральное пространство, в котором расположены вены и жировая соединительная ткань.

Рис. 16-3. Связки позвоночного столба

Краниально твердая мозговая оболочка спинного мозга переходит в твердую мозговую оболочку головного мозга, а каудально распространяется до SII у взрослых и еще дистальнее — у детей. Корешки спинномозговых нервов направляются от спинного мозга к межпозвоночным отверстиям, (рис. 16-5). Поскольку спинной мозг короче позвоночного столба, а его

сегменты короче соответствующих позвонков, то в направлении от шейных сегментов к крестцовым увеличивается расстояние, которое необходимо преодолеть спинномозговому нерву, чтобы достичь "своего" межпозвоночного отверстия. На уровне крестца это расстояние составляет 10-12 см (рис. 16-6). Ниже уровня позвонка LI спинной мозг обычно не имеет единой плотной структуры, а расщеплен на множество ветвей. Эти многочисленные ветви свободно "плавают" в цереброспинальной жидкости внутри дурального мешка и называются cauda equina ("конский хвост"). Люмбальную пункцию чаще всего выполняют ниже уровня позвонка LI, что делает маловероятным повреждение спинного мозга, при этом пункционная игла скорее сместит компоненты конского хвоста, нежели травмирует.

В связи с богатой коллатеральной сетью при повреждении артериального сегмента ишемия спинного мозга в бассейне задней спинномозговой артерии маловероятна. Иная ситуация в бассейне непарной передней спинномозговой артерии, которая кровоснабжает вентральную часть спинного мозга, формируется в результате слияния двух ветвей позвоночной артерии и имеет многочисленные коллатерали с сегментарными и корешковыми ветвями шейного, грудного (межреберные артерии) и пояснично-крестцового отдела (рис. 16-9). Задне-латеральные спинномозговые артерии — ветви позвоночной артерии, проходя вниз, кровоснабжают верхнегрудные сегменты. Непарная сегментарная ветвь аорты (артерия Адамкевича, или большая корешковая артерия) обеспечивает почти все кровоснабжение в нижнегрудных и поясничных сегментах. Повреждение этой артерии влечет за собой риск ишемии всей нижней половины спинного мозга. Артерия Адамкевича проходит через межпозвоночное отверстие, чаще всего слева.

Физиология

Физиологические эффекты центральной блокады обусловлены прерыванием афферентной и эфферентной импульсации к вегетативным и соматическим структурам. Соматические структуры получают чувствительную (сенсорную) и двигательную (моторную) иннервацию, в то время как висцеральные структуры — вегетативную.

Соматическая блокада

Предотвращение боли и релаксация скелетной мускулатуры — важнейшие цели центральной блокады. Местный анестетик соответствующей продолжительности действия (выбранный в зависимости от длительности операции) после люм-бальной пункции вводят в субарахноидальное пространство. Анестетик смешивается с церебро-спинальной жидкостью и воздействует на спинной мозг. Распространение

анестетика по длинной оси спинного мозга зависит от ряда факторов, включая силу тяжести, давление цереброспинальной жидкости, положение тела больного, температуру раствора и пр. Местный анестетик смешивается с цереброспинальной жидкостью, диффундирует и проникает в вещество центральной нервной системы. Для блокады необходимо, чтобы анестетик проник через клеточную мембрану и блокировал натриевые каналы аксоплазмы. Этот процесс происходит только при определенной минимальной пороговой концентрации местного анестетика (Км, от англ, minimum concentration — минимальная концентрация). Но нервные волокна не однородны. Имеются структурные различия между волокнами, обеспечивающими двигательную, чувствительную и симпатическую иннервацию.

Существуют три типа волокон, обозначаемые как A, B и C. Тип A имеет подгруппы α,β, γ и δ. Нервный корешок составляют волокна различных типов, поэтому начало анестезии не будет одномоментным. Иными словами, минимальная концентрация местного анестетика (Км), необходимая для прерывания нервного импульса, варьируется в зависмости от типа волокна (гл. 14). Например, мелкие и миелиновые волокна блокировать легче, чем крупные и безмиелиновые. Теперь понятно, почему $A \gamma$ - и B-волокна блокировать легче, чем крупные Аа и безмиелиновые С-ВО-локна. Поскольку имеет место диффузия и разведение местного анестетика, то полная блокада наиболее резистентных волокон может и не наступить. В результате граница симпатической блокады (о которой судят по температурной чувствитель-ности) может проходить на два сегмента выше, чем граница сенсорной блокады (болевая и тактильная чувствительность), которая в свою очередь на два сегмента выше границы двигательной блокады. Сегменты, в которых получена блокада одних и не произошло блокирования других, называются зоной дифференциальной блокады. Оценивая анестезию, важно иметь в виду, какая именно блокада достигнута: температурная (симпатическая), болевая (сенсорная, чувствительная) или двигательная (моторная), потому что максимальная выраженность каждой из них неодинакова у разных сегментов.

Различная степень блокады соматических волокон может создать клинические проблемы. Ощущение сильного давления или значительных двигательных воздействий передается посредством С-волокон, которые трудно блокировать. Аналогично, граница моторной блокады может проходить гораздо ниже, чем сенсорной. Следовательно, у больного сохраняется способность движений в оперируемой конечности, что может препятствовать работе хирурга. Кроме того, особо тревожные больные могут воспринимать тактиль-

ные ощущения от прикосновения как болевые. Седация и хороший психологический контакт с тревожными больными позволяет предупредить нежелательное восприятие проприоцептивной рецепции как болевой.

Висцеральная блокада

Большинство висцеральных эффектов центральной блокады обусловлено прерыванием вегетативной иннервации различных органов.

Кровообращение

Прерывание симпатической импульсации вызывает гемодинамические сдвиги в сердечнососудистой системе, выраженность которых прямо пропорциональна степени медикаментозной сим-патэктомии. Симпатический ствол связан с тора-коабдоминальным отделом спинного мозга. Волокна, иннервирующие гладкие мышцы артерий и вен, отходят от спинного мозга на уровне сегментов TV-LI. При медикаментозной симпатэктомии с помощью местного анестетика артериальный тонус преимущественно сохраняется (благодаря воздействию локальных медиаторов), в то время как венозный значительно снижается. Тотальная медикаментозная симпатэктомия вызывает увеличение емкости сосудистого русла с последующим снижением венозного возврата и артериальной гипотонией. Гемодинамические изменения при частичной симпатэктомии (блокада до уровня TVIII) обычно компенсируются вазоконстрикцией, опосредованной симпатическими волокнами выше уровня блокады. У людей со светлой кожей вазоконстрикцию можно видеть невооруженным глазом. Симпатические волокна, идущие в составе грудных сердечных нервов (Т1-Т4), несут импульсы, убыстряющие сердечные сокращения. При высокой центральной блокаде тоническая активность блуждающего нерва становится несбалансированной, что вызывает брадикардию. Опускание головного конца тела и инфузия жидкости вызывают увеличение преднагрузки, венозный возврат возрастает и сердечный выброс нормализуется. Холи-ноблокаторы устраняют брадикардию.

Выраженность артериальной гипотонии определяет выбор лечебных мероприятий. Наиболее чувствительные органы-мишени — это сердце и го-ловной мозг. Умеренное снижение доставки кислорода к сердцу компенсируется снижением работы миокарда и потребления им кислорода. Значительно уменьшается постнагрузка, и работа сердца, связанная с преодолением общего периферического сосудистого сопротивления, также

снижается. При значительном и нелеченном уменьшении преднагрузки эти компенсаторные реакции оказываются несостоятельными. Ауторегуляция мозгового кровообращения представляет собой механизм, посредством которого мозг в значительной степени защищен от артериальной гипотонии.

У здоровых людей мозговой кровоток остается неизменным, пока среднее артериальное давление не снижается менее 60 мм рт. ст. (гл. 25).

Лечение и профилактика артериальной гипотонии органично связаны с пониманием механизмов ее развития. Непосредственно перед выполнением блокады и после этого на протяжении анестезии проводят инфузию жидкости.

ТАБЛИЦА 16-1.	Функция	Миелинизац ия	Толщина	Км
Классификаци				
я нервных				
волокон Класс	π			
Αα	Двигательные	+	++++	++++
4.0	импульсы			
Αβ	Кожная	+	+++	+++
	чувствительно			
	СТЬ			
	(тактильная,			
	болевая,			
	чувство			
	давления)			
ΑΓ	Проприоцепти	+	+++	++
	вная			
	чувствительно			
	СТЬ			
Αδ	Кожная	+	++	+
	чувствительно			
	сть (болевая и			
	температурна			
	я)			
В	Преганглиона	+	++	+
	рные			
	симпатически			
	е волокна			
C	Кожная	+		+++
	чувствител	ьность		
	(болевая и чувство			
	давления)			