ФГБОУ ВО КрасГМУ им. проф. В.Ф.Войно-Ясенецкого Минздрава России Кафедра пропедевтики внутренних болезней и терапии с курсом ПО

Заведующий кафедрой: д.м.н, Шестерня Павел Анатольевич

Проверил: к.м.н., Пелипецкая Елена Юрьевна

Тема реферата: Коронавирусная инфекция COVID-19: клиника, диагностика и лечение.

Выполнила: врач-ординатор 1 года обучения, специальности кардиология Гульняшкина К.В.

Содержание

- 1.Введение
- 2.Путь передачи
- 3. Патогенез и основные закономерности поражения органов мишеней.
- 4. Клиническая картина
- 5. Диагностика коронавирсной инфекции
- 6.Лечение коронавирусной инфекции
- 7. Список используемой литературы

1.Введение.

Коронавирусная инфекция (COVID-19) вызывает тяжелое острое заболевание с развитием в ряде случаев респираторного дистресс -синдрома. Вирус был впервые выявлен во время эпидемической вспышки в городе Ухань, провинция Хубэй, Китай. Первоначально ВОЗ об этом было сообщено 31 декабря 2019 года, а уже 30 января 2020 года ВОЗ объявила вспышку COVID-19 глобальной чрезвычайной ситуацией в области здравоохранения. 11 марта 2020 года ВОЗ объявила COVID-19 глобальной пандемией, впервые назвав пандемией инфекционный процесс после пандемии гриппа H1N1 в 2009 году.

Болезнь, вызванная новым коронавирусом, была названа BO3 COVID-19, новая аббревиатура, полученная от "коронавирусная болезнь 2019 года". Это название было выбрано для того, чтобы избежать неверных трактовок с точки зрения происхождения вируса, популяций, географии или ассоциаций февраля 2020 года исследовательская с животными. 11 Международного Комитета коронавирусу ПО систематике вирусов опубликовала заявление, в котором объявила официальное обозначение нового вируса: тяжелый острый респираторный синдром коронавирус (SARS-CoV-2). В настоящем изложении по отношению к наименованию вируса и вызванного им инфекционного процесса будет использована одна аббревиатура - COVID-19.

Коронавирусы составляют обширное семейство из 40 вирусов, 7 из которых вызывают заболевания у человека. Некоторые коронавирусы, которые обычно заражают животных, постепенно эволюционировали и стали способными заражать людей. COVID-19 вероятно, является одним из таких вирусов, инфицирование которым предположительно впервые произошло на крупном оптовом рынке животных и морепродуктов в Ухане.

2.Путь передачи.

Считается, что передача инфекции происходит через капли жидкого содержимого дыхательных путей, которые вылетают у заболевшего при кашле и чихании, как и 3 при других респираторных инфекциях, включая грипп и риновирус [19], возможна также передача вируса воздушно-пылевым и контактным путями. При этом к факторам передачи можно отнести воздух, пищевые продукты, контаминированные предметы обихода.

Ученые проследили за экспрессией вируса в тампонах от инфицированных людей в когорте пациентов. Они обнаружили увеличение вирусной нагрузки в то время, когда у пациентов появились симптомы заболевания. У одного

пациента симптомы заболевания так и не проявились, но у него только на 7 день перестал выделяться вирус после регистрации предполагаемого времени инфицирования.

3. Патогенез и основные закономерности поражения органов мишеней.

Воздушнокапельным, воздушно-пылевым или контактным путем вирус попадает в организм человека. Контактный путь подразумевает проникновение вируса через слизистые оболочки глаз, носа, носо- и ротоглотки. Следует отметить способность вирусов проникать через клеточные барьеры различными механизмами транспорта.

Входные ворота возбудителя – эпителий верхних дыхательных путей и эпителиоциты желудка и кишечника. Начальным этапом заражения является 9 Версия 13 (14.10.2021) проникновение SARS-CoV-2 в клетки-мишени, имеющие рецепторы ангиотензинпревращающего фермента II типа (АПФ2). Клеточная трансмембранная сериновая протеаза типа 2 (ТСП2) способствует связыванию вируса с АПФ2, активируя его S-протеин, необходимый для SARS-CoV-2 АПФ2 проникновения В клетку. располагается цитоплазматической мембране многих типов клеток человека, в том числе в альвеолярных клетках II типа в легких и энтероцитах тонкого кишечника, эндотелиальных клетках артерий и вен, клетках гладкой мускулатуры артерий, макрофагов. АПФ2 и ТСП2 обнаружены в клетках тканей органов дыхания, пищевода, кишечника, сердца, надпочечников, мочевого пузыря, головного мозга и других.

Установлено, что диссеминация SARS-CoV-2 из системного кровотока или через пластинку решетчатой кости приводит к поражению головного мозга. Изменение обоняния (аносмия) у больных на ранней стадии заболевания может свидетельствовать как о поражении ЦНС вирусом, проникающим прежде всего через обонятельный нерв, а также о морфологически продемонстрированном вирусном поражении клеток слизистой оболочки носа.

Критическая форма COVID-19 является разновидностью цитокинового шторма, а ее проявления сходны с течением первичного и вторичного гемофагоцитарного лимфогистиоцитоза (ГЛГ) или синдрома активации макрофагов (CAM). При критическом течении COVID-19 развивается патологическая активация врожденного и приобретенного (Th1- и Th17типы) иммунитета, «дисрегуляция» синтеза «провоспалительных», «иммунорегуляторных», «антивоспалительных» цитокинов и хемокинов: ИЛ2, ИЛ6, ИЛ7, ИЛ8, ИЛ9, ИЛ10, ИЛ12, ИЛ17, ИЛ1, ИЛ18, $(\Gamma$ -KC Φ), гранулоцитарный фактор колониестимулирующий

гранулоцитарно-макрофагальный колониестимулирующий фактор КСФ), фактор некроза опухоли α (ФНОα), ИФНу-индуцируемый белок 10, ИФНα и ИФНβ, моноцитарный хемоаттрактантный белок 1 (МХБ1), макрофагальный воспалительный белок 1α (МВБ1α), а также маркеров воспаления (СРБ, ферритин). У пациентов с критическим течением COVID-19 васкулярная эндотелиальная дисфункция, коагулопатия, тромбозы с наличием антител к фосфолипидам, с клинической картиной, напоминающей катастрофический антифосфолипидный синдром. Клинические и патологические изменения трудно дифференцировать с полиорганным тромбозом, развивающимся при ДВС и тромботической микроангиопатии (ТМА). Цитокиновый шторм при COVID-19, как правило, приводит к развитию ОРДС, полиорганной недостаточности и может быть причиной летального исхода.

Как показала реальная клиническая практика, наиболее распространенным серьезным проявлением COVID-19 у первичных пациентов являются респираторные нарушения.

Клинические варианты и проявления COVID-19 инфекции:

- 1. Острая респираторная вирусная инфекция легкого течения.
- 2. Пневмония без дыхательной недостаточности.
- 3. Пневмония с ОДН
- 4. ОРДС.
- 5. Полиорганная недостаточность
- 6. Сепсис.
- 7. Инфекционно-токсический шок
- В зависимости от интенсивности патологического процесса в легких развитие острой дыхательной недостаточности происходит по нескольким сценариям:
- медленное развитие сопровождается субъективными ощущениями недостатка воздуха, которые купируются позой больного и учащенным дыханием, по мере разворачивания обратимых процессов в легких;
- выраженное развитие жалобы на ощущение недостатка воздуха, беспокойство, эйфория; кожа влажная, бледная, с легким акроцианозом; нарастающая одышка (25-30 дыханий в мин.), умеренное повышение АД; Нь О2 ниже 80- 90 %, РаО2 снижено до 70 мм рт.ст, РаСО2 повышено до 50 мм рт.ст;

- **тяжелое развитие гипоксии** возбуждение, галлюцинации, профузный пот, цианоз, одышка (35-40 дыханий в мин.), тахикардия, артериальная гипертензия. PaO2 снижено до 60 мм рт.ст;
- **гипоксическая кома** сознание отсутствует, судороги, зрачки расширены, кожные покровы синюшны, с мраморным рисунком, артериальное давление критически падает. Если пациенту не оказана помощь, наступает смерть.

4. Клиническая картина

Инкубационный период составляет от 2 до 14 суток, в среднем 5-7 суток.

Для COVID-19 характерно наличие клинических симптомов ОРВИ:

- Повышение t тела (> 90%);
- Кашель (сухой или с небольшим количеством мокроты) в 80% случаев;
- Одышка (30%);
- Утомляемость (40%);
- Ощущение заложенности в грудной клетке (> 20%).

Наиболее тяжелая одышка развивается к 6-8-му дню от момента заболевания.

Также установлено, что среди первых симптомов могут быть миалгия (11%), спутанность сознания (9%), головные боли (8%), кровохарканье (2-3%), диарея (3%), тошнота, рвота, сердцебиение. Данные симптомы в начале болезни могут наблюдаться и при отсутствии повышения температуры тела.

Классификация COVID-19 по степени тяжести

Легкое течение

- Т тела < 38 °C, кашель, слабость, боли в горле
- Отсутствие критериев среднетяжелого и тяжелого течения

Среднетяжелое течение

- T тела > 38 °C
- ЧДД > 22/мин
- Одышка при физических нагрузках
- Изменения при КТ (рентгенографии), типичные для вирусного поражения
- SpO2 < 95%
- СРБ сыворотки крови >10 мг/л

Тяжелое течение

- ЧДД > 30/мин
- SpO2 ≤ 93%
- $PaO2 / FiO2 \le 300 \text{ MM pt.ct.}$
- Снижение уровня сознания, ажитация
- Нестабильная гемодинамика (систолическое АД менее 90 мм рт.ст. или диастолическое АД менее 60 мм рт.ст., диурез менее 20 мл/час)
- Изменения в легких при КТ (рентгенографии), типичные для вирусного поражения
- Лактат артериальной крови > 2 ммоль/л
- qSOFA > 2 баллов

Крайне тяжелое течение

- Стойкая фебрильная лихорадка
- ОРДС
- ОДН с необходимостью респираторной поддержки (инвазивная вентиляции легких)
- Септический шок
- Полиорганная недостаточность
- Изменения в легких при КТ (рентгенографии), типичные для вирусного поражения критической степени или картина ОРДС.

5. Диагностика коронавирусной инфекции.

Основной вид биоматериала для лабораторного исследования на COVID-19— мазок из носоглотки и/или ротоглотки. Росздравнадзор одобрил семь наборов диагностических тестов для выявления нового коронавируса SARS-CoV-2 методом ПЦР и два набора для выявления вируса методом изотермической амплификации. Основной биологический материал для исследования-отделяемое из носоглотки и ротоглотки. С целью дифференциальной диагностики у всех заболевших проводят исследования методом ПЦР на возбудители респираторных инфекций: вирусы гриппа типа А и В, респираторно-синцитиальный вирус (РСВ), вирусы парагриппа,

риновирусы, аденовирусы, человеческие метапневмовирусы, MERS-CoV. При подозрении на вторичную легочную инфекцию осуществляется микробиологическая диагностика (культуральное исследование) и/или ПЦРдиагностика на Streptococcus pneumoniae, Haemophilus influenzae type B, иные Legionella pneumophila, a также возбудители бактериальных респираторных инфекций нижних дыхательных путей. Для экспрессдиагностики ΜΟΓΥΤ использоваться экспресс-тесты ПО выявлению пневмококковой, легионеллезной антигенурии

К исследованиям, которые должны быть проведены при оказании медицинской помощи в качестве первой линии, необходимо отнести:

- общий анализ крови с определением уровня эритроцитов, гематокрита, лейкоцитов, тромбоцитов, лейкоцитарной формулы.
- биохимический анализ крови (мочевина, креатинин, электролиты, печеночные ферменты, билирубин, глюкоза, альбумин, ЛДГ).
- СРБ, прокальцитонин, ферритин, D-димер, интерлейкины IL-4, IL-6, IL-10, TNF-α, INF-у и другие индикаторы воспаления и иммунного статуса: для оценки клинического течения болезни, тяжести пневмонии, осложнениях, для формирования стратегии лечения.
- Коагулограмма с определением протромбинового времени (повышено), МНО, АЧТВ: для определения признаков нарушения свертывания крови, надвигающегося ДВС-синдрома, острой дыхательной недостаточности и др.

Лучевая диагностика поражений легких у пациентов с COVID-19. Лучевые методы исследований, применяемые для диагностики у пациентов с подозрением на наличие коронавирусной инфекции (COVID-19) и вирусных пневмоний:

- Рентгенография (стационарным и палатным аппаратом)
- Компьютерная томография метод выбора
- Ультразвуковое исследование легких

Мультиспиральная компьютерная томография (МСКТ) органов грудной клетки является на сегодняшний день наиболее информативным и чувствительным из лучевых методов исследований при подозрении на вирусное поражение легких, в том числе COVID-19.

Диагноз «внебольничная пневмония предположительно коронавирусной этиологии» в условиях эпидемии COVID-19 устанавливается при наличии у больного подтвержденной инфильтрации легочной ткани на МСКТ, изменений общеклинического анализа крови (лейкопения, лимфопения,

увеличение СРБ), лихорадки. Этого набора диагностических манипуляций достаточно для постановки диагноза и принятия клинических решений до проведения лабораторного теста на наличие коронавирусной инфекции.

КТ-признаки и степень тяжести поражения легких при COVID-19

Степень тяжести /	КТ-признаки
клиническое течение	
Легкое течение	Не более 3-х очагов уплотнения по типу «матового стекла» <3
	см по максимальному диаметру
Среднетяжелое и тяжелое	Более 3-х очагов уплотнения по типу «матового стекла» <3 см по
течение	максимальному диаметру, уплотнения легочной ткани по типу
	матового стекла в сочетании с очагами консолидации
Тяжелое течение	Диффузное уплотнение легочной ткани по типу матового стекла
	и консолидации в сочетании с ретикулярными изменениями
Не характерны	Лобарный инфильтрат, кавитация, очаговая диссеминация,
	симптом «дерево в почках»
Критическое состояние	Может наблюдаться повышенная замутнённость всех зон легких
	(«белое лёгкое»)
Выздоровление	Возможное полное рассасывание субплевральных фокусов
	уплотнения по типу «матового стекла», некоторые уплотнённые
	поражённые участки могут оставлять после себя фиброзные
	полоски или субплевральный сетчатый узор
Вероятность обострения	Пациенты с несколькими дольковыми поражениями, особенно с
	обширными поражёнными участками, должны оставаться под
	наблюдением

Резюмируя: До 50% COVID-19 инфицированных могут иметь нормальные КТ в 0–2 дни с момента возникновения респираторных синдромов.

На раннем этапе развития заболевания преобладают билатеральные, базальные периферические изменения по типу матового стекла (50%–75%). По мере прогрессирования заболевания формируются участки изменения легочной ткани по типу «лоскутного одеяла», участки консолидации, напоминающий проявления организующейся пневмонии — «обратное гало» (с 13-16 дня развивается диффузное повреждение альвеол).

При благополучном исходе разрешение патологических изменений длится более 1 месяца, формируется фиброз.

6. Лечение коронавирусной инфекции.

Лечение COVID-19 в соответствии с протоколами настоящих рекомендаций проводится в подтвержденных и вероятных случаях заболевания.

В настоящее время следует выделить несколько препаратов <u>этиотропной</u> <u>терапии</u>, которые могут быть использованы при лечении COVID-19: фавипиравир, ремдесивир, умифеновир и интерферон-альфа.

Частота достижения клинического улучшения на 7-й день терапии в группе пациентов, получавших фавипиравир, была практически в 1,5 раза больше,

чем в группе сравнения. Доля пациентов с элиминацией вируса в дни 3 и 5 дни терапии была выше в группе лечения фавипиравиром, что свидетельствовало о более раннем наступлении элиминации при применении препарата.

Препарат назначается по весу человека менее 75 кг: нагрузочная доза 1600мг два раза в первый день, последующие 9 дней по 600 мг. два раза в сутки.

С массой тела 75 кг и более: по 1800 мг 2 раза в сутки в 1-й день, далее по 800 мг 2 раза в сутки последующие 9 дней.

Клиническое использование плазмы антиковидной:

BO3, Согласно рекомендациям применение доноровплазмы otреконвалесцентов (лиц с подтвержденным случаем COVID-19 в стадии выздоровления) целью лечения заболеваний, характеризующихся эпидемическими вспышками и отсутствием специфического лечения, основано на концепции пассивной иммунизации.

Показания к клиническому использованию антиковидной плазмы:

- 1. Оптимальный период назначение до 10 дня от момента появления клинических симптомов заболевания у пациентов:
- в тяжелом состоянии, с положительным результатом лабораторного исследования на PHK SARS-CoV-2;
- при средней степени тяжести с проявлениями ОРДС.
- 2. В случае длительности заболевания более 21 дня при неэффективности проводимого лечения и положительном результате на PHK SARS-CoV-2.

Суммарный объем трансфузии составляет 5-10 мл антиковидной плазмы/кг веса пациента, в среднем 400-600 мл. Для повышения клинической эффективности, рекомендуется использовать 2 трансфузии антиковидной плазмы с интервалом 12-24 ч. в объеме 200-325 мл, заготовленной от разных доноров.

Антиковидная плазма также может быть использована для плазмозамещения при выполнении плазмафереза.

Противопоказания к клиническому использованию антиковидной плазмы:

- Аллергические реакции на белки плазмы или цитрат натрия в анамнезе;
- Пациентам с аутоиммунными заболеваниями или селективным дефицитом IgA в анамнезе необходима тщательная оценка возможных побочных эффектов;

• Общие противопоказания для трансфузии свежезамороженной плазмы.

Патогенетическая терапия:

В настоящее время продолжаются клинические исследования эффективности и безопасности таргетных препаратов у пациентов с тяжелым/критическим течением коронавирусной инфекции.

Учитывая, что вторичный синдром активации макрофагов (САМ)/гемофагоцитарный лимфогистоцитоз (ГЛГ) при COVID-19 является следствием массированной неконтролируемой активации иммунной системы (гипериммунной реакции), спровоцированной острой вирусной инфекцией, пациентам, наряду с симптоматическим и этиотропным лечением, в большинстве случаев должна проводиться иммуносупрессивная терапия.

На амбулаторном этапе при среднетяжелом течении заболевания возможно назначение ингибиторов янус-киназ (барицитиниба или тофацитиниба). В течение первых 7 дней болезни и/или при положительной РНК SARS-CoV-2 терапия ингибиторами янус-киназ проводится в сочетании с препаратами этиотропного лечения (фавипиравиром и интерфероном-альфа), а также с пероральными антикоагулянтами.

В случае госпитализации в стационар пациента с легким/среднетяжелым течением COVID-19 и факторами риска тяжелого течения при наличии патологических изменений В легких, соответствующих KT1-2, пневмонии среднетяжелой степени ПО данным рентгенологического обследования (неоднородные затемнения округлой формы и различной протяженности, вовлечение паренхимы легкого $\leq 50\%$) в сочетании с двумя и более признаками:

- SpO2 97 и выше, без признаков одышки
- $3N \le У$ ровень $CPБ \le 6N$
- Температура тела 37,5-37,9 °C в течение 3-5 дней
- Число лейкоцитов 3,5-4,0×109/л
- Абсолютное число лимфоцитов 1,5-2,0×109 /л

Рекомендуется назначение ингибиторов янус-киназ 1,2 (тофацитиниба или барицитиниба) или ингибитора интерлейкина 17A (нетакимаба) или антогониста рецептора ИЛ-6 левилимаба (подкожно/внутривенно), или блокатора ИЛ-6 олокизумаба (подкожно/внутривенно).

При наличии патологических изменений в легких, соответствующих КТ1-2, или пневмонии среднетяжелой степени по данным рентгенологического обследования (неоднородные затемнения округлой формы и различной

протяженности, вовлечение паренхимы легкого ≤ 50%) в сочетании с двумя и более нижеуказанными признаками

- SpO2 94-97%, одышка при физической нагрузке
- $6N \le У$ ровень CPБ < 9N
- Температура тела □38 °C в течение 3-5 дней
- Число лейкоцитов 3,0-3,5×109/л
- Абсолютное число лимфоцитов 1,0-1,5 ×109/л

Рекомендуется внутривенное назначение антагонистов рецептора ИЛ-6 — тоцилизумаба или сарилумаба, или левилимаба, или блокатора ИЛ-6 олокизумаба.

При ИЛ-6 неэффективности монотерапии антагонистами рецептора сарилумабом, левилимабом) блокатором (тоцилизумабом, ИЛИ ИЛ-6 (олокизумабом) возможно применение комбинированной терапии, путем назначения антагониста рецептора ИЛ-6 и при неэффективности терапии через 12-24 часа, дополнительное применение блокатора ИЛ-6 (олокизумаба) в рекомендуемых дозах.

Необходимо помнить, что при назначении вышеперечисленных генноинженерных биологических препаратов повышается риск развития вторичной бактериальной инфекции.

Глюкокортикостероиды (ГКС) являются препаратами первого выбора для лечения больных с первичным ГЛГ и вторичным САМ/ГЛГ, они угнетают все фазы воспаления, синтез широкого спектра провоспалительных медиаторов, увеличение концентрации которых в рамках цитокинового шторма ассоциируется с неблагоприятным прогнозом при СОVID-19 и риском развития ОРДС и сепсиса.

Для терапии тяжелой формы COVID-19 (пневмония с дыхательной недостаточностью/ОРДС, признаки «цитокинового шторма») могут применяться различные схемы введения ГКС: дексаметазон в дозе 16-24 мг/сутки внутривенно в зависимости от тяжести состояния пациента за 1-2 введения; метилпреднизолон в дозе 125 мг/введение/внутривенно каждые 6-12 ч или 250 мг/введение/внутривенно одномоментно.

Антитромботическая терапия

В качестве препаратов первой линии для пациентой с легкой формой коронавирусной инфекции используются ривароксабан в дозе 10 мг 1 раз в сутки или апиксабан в дозе 2,5 мг 2 раза в сутки.

Антитромботическая терапия у пациентов, поступивших в стационар. Назначение НМГ/фондапаринукса натрия, как минимум, в профилактических дозах показано ВСЕМ госпитализированным пациентам и должно продолжаться как минимум до выписки.

ТΓВ конечностей/ТЭЛА Профилактику хинжин cиспользованием профилактических доз низкомолекулярного гепарина (НМГ)/фондапаринукса натрия стоит рассматривать для больных со среднетяжелой формой COVID-19, которые в условиях карантина лечатся дома и имеют высокий риск венозных тромбоэмболических осложнений, низкий риск кровотечений и не получают антикоагулянтного лечения по другим показаниям. Это относится прежде всего к больным с сильно ограниченной подвижностью, ТГВ/ТЭЛА в анамнезе, активным злокачественным новообразованием, крупной операцией или травмой в предшествующий месяц, носителям ряда тромбофилий (дефициты антитромбина, протеинов С или S, антифиосфолипидный синдром, фактор V Лейден, мутация гена протромбина G-20210A), а также при сочетании дополнительных факторов риска ТГВ/ТЭЛА (возраст старше 70 лет, сердечная/дыхательная недостаточность, ожирение, системное заболевания соединительной ткани, гормональная заместительная терапия/прием оральных контрацептивов).

7.Список используемой литературы

- 1.Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции(COVID-19). Версия 13 (14.10.2021)
- 2. Coronavirus disease 2019 (COVID-19): Interim infection prevention and control recommendations for patients with suspected or confirmed coronavirus disease 2019 (COVID-19) in healthcare settings. Centers for Disease Control and Prevention (CDC) website. https://www.cdc.gov/coronavirus/2019-ncov/infection-control/control-recommendations.html. Last reviewed March 19, 2020. Accessed March 28, 2020.
- 3. Письмо Минздрава России № 30–4/И/2–1198 от 07.02.2020. «Временные рекомендации по лабораторной диагностике новой коронавирусной инфекции, вызванной 2019-nCoV»
- 4. Христенко Е.А. и соавт. КТ-паттерны при COVID-19 ассоциированных пневмониях –стандартизация описаний исследований на основе глоссария общества Флейшнера // REJR. 2020.№. 10
- 5. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) China, 2020. China CDC Weekly. 2020;2(8).
- 6. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N EnglJ Med. 2020.