РАЗВОДОВСКАЯ Анастасия Владимировна

ПОЛИМОРФИЗМЫ НЕКОТОРЫХ ГЕНОВ ПРИ БРОНХИАЛЬНОЙ АСТМЕ

14.01.04 — внутренние болезни 14.01.25 — пульмонология

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена на кафедре внутренних болезней №1 ГБОУ ВПО «Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации

Научные руководители:

доктор медицинских наук, профессор доктор медицинских наук доцент

Никулина Светлана Юрьевна

Черкашина Ирина Ивановна

Официальные оппоненты:

Логвиненко Надежда Ивановна - доктор медицинских наук, профессор, ГБОУ ВПО «Новосибирский государственный медицинский университет» Министерства здравоохранения Российской Федерации, кафедра терапии, гематологии и трансфузиологии ФПК и ППВ, профессор кафедры;

Волкова Людмила Ивановна - доктор медицинских наук, профессор, ГБОУ ВПО «Сибирский государственный медицинский университет» Министерства здравоохранения Российской Федерации, кафедра внутренних болезней педиатрического факультета, заведующий кафедрой.

Ведущая организация: ГБОУ ВПО «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации, г. Иркутск.

Защита состоится «19» ноября 2015 г. в 11:00 часов на заседании диссертационного совета Д 208.037.01, созданного на базе ГБОУ ВПО «Красноярский государственный медицинский университет им. проф. В. Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации по адресу: 660022, г. Красноярск, ул. Партизана Железняка,1.

С диссертацией можно ознакомиться в библиотеке и на сайте ГБОУ ВПО «Красноярский государственный медицинский университет им. проф. В. Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации, http://www.krasgmu.ru

Автореферат разослан	«»		2015	Γ.
----------------------	----	--	------	----

Ученый секретарь диссертационного совета Д 208.037.01 доктор медицинских наук, доцент

Штарик Светлана Юрьевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Бронхиальная астма (БА) в настоящее время является одним из наиболее часто встречаемых бронхолегочных заболеваний, при котором заболеваемость и смертность продолжают расти [Демко И.В., 2012; Bartolomei-Diaz J. A., 2011]. Эпидемиологические исследования последних лет подтверждают высокую распространенность БА, которая варьирует в среднем от 5 до 10% [Ненашева Н.М., 2011; Faiz A., 2012]. Эти факты определяют пристальное внимание исследователей к проблеме профилактики БА, установления значимости различных факторов в развитии этого заболевания [Федосеев Г.Б., 2012].

Наряду с общепризнанными факторами риска БА, такими, как воздействие различных аллергенов, курения и профессиональных вредностей, продолжается поиск новых причин, способствующих возникновению заболевания [Випуаvanich S., 2015]. В последние годы активно обсуждается проблема генетической предрасположенности к развитию БА. В результате многочисленных исследований было выяснено, что предполагаемый общий генетический вклад в развитие БА составляет 50-60% [Holloway J. W., 2010; Duru S., 2014; Mathias R. A., 2014].

Современные данные о патогенетических механизмах БА рассматривают полиморфизмы генов, контролирующих иммунное распознавание и иммунорегуляцию, кодирующих медиаторы воспаления, различные белки и процессы, связанные с ремоделированием дыхательных путей, бронхиальной гиперреактивностью и др., в качестве внутренних факторов риска.

Количество изученных генетических предикторов постоянно возрастает [Смирнова А.Ю. и соавт., 2014], что дает право говорить о генетическом полиморфизме БА. Тем не менее, до полного понимания генетических основ БА достаточно далеко. Остается неясным, какие гены и их сочетание

способствуют развитию БА, в том числе в различных этнических группах [Чучалин А. Г., 2011].

В настоящее время внимание исследователей обращено на ассоциацию БА однонуклеотидными полиморфизмами (ОНП) генов: rs1804470 трансформирующего фактора роста бета-1 $(TGF-\beta 1)$, rs231775 цитотоксического Т-лимфоцит - связанного иммуноглобулина 4 (СТLА4), rs4129267 рецептора интерлейкина 6 (IL6R), rs1051730 никотинового рецептора 3 (CHRNA3). Полиморфизмы этих генов воспроизведены на популяции жителей Азии [Che Z. et al, 2014; Hawkins G. A. et al, 2012; Nie W. et al, 2012; Wilk J. B. et al, 2012]. Литературные данные об ассоциации БА с такими генами, как: rs1828591 белкового гена регуляции тканей (ННІР), rs1799895 гена внеклеточной супероксиддисмутазы (SOD3) полностью отсутствуют. Поэтому представляется актуальным изучение влияния полиморфизмов генов *TGF-\beta1*, CTLA4, HHIP, IL6R, CHRNA3, SOD3 на развитие БА, что позволит проводить раннюю диагностику, даст возможность формировать группы риска развития БА, оптимизировать первичную профилактику, а в дальнейшем, возможно, и терапию данного заболевания.

Цель исследования

Изучить влияние полиморфизмов генов *TGF-β1*, *CTLA4*, *HHIP*, *IL6R*, *CHRNA3*, *SOD3* на развитие БА для осуществления генетического прогноза и оптимизации первичной профилактики данной патологии.

Задачи исследования

- 1. Оценить половозрастные, клинические и функциональные характеристики у больных аллергической и неаллергической бронхиальной астмой.
- 2. Определить вклад полиморфизмов генов (*rs1804470* гена трансформирующего фактора роста бета-1 (*TGF-β1*); *rs231775* гена цитотоксического Т-лимфоцит связанного иммуноглобулина 4 (*CTLA4*); *rs1828591* белкового гена регуляции тканей (*HHIP*); *rs4129267* гена рецептора интерлейкина 6 (*IL6R*); *rs1051730* гена никотинового

- рецептора 3 (*CHRNA3*); rs1799895 гена внеклеточной супероксиддисмутазы (*SOD3*)) в развитие аллергической БА.
- 3. Исследовать участие полиморфизмов (rs1804470 генов гена трансформирующего фактора роста бета-1 (TGF- $\beta 1$); rs231775 гена цитотоксического Т-лимфоцит - связанного иммуноглобулина 4 (СТLА4); rs1828591 белкового гена регуляции тканей (HHIP); rs4129267 гена 6 (*IL6R*); рецептора интерлейкина rs1051730 гена никотинового 3 rs1799895 рецептора (CHRNA3);гена внеклеточной супероксиддисмутазы (SOD3)) в развитии неаллергической БА.

Научная новизна результатов исследования

В настоящей работе впервые у больных БА, жителей г. Красноярска, изучена частота встречаемости генотипов И аллелей ряда (трансформирующего фактора бета-1 (rs1800470 $TGF-\beta 1$), роста цитотоксического Т-лимфоцит – связанного иммуноглобулина 4 (rs231775) CTLA4), рецептора интерлейкина 6 (rs4129267 IL6R), белкового гена регуляции тканей (rs1828591 HHIP) и никотинового рецептора 3 (rs1051730 CHRNA3)) и определены ассоциации с риском развития БА.

Впервые установлено, что носительство аллеля А rs1800470 гена TGF- $\beta1$ в гомозиготном (AA) и гетерозиготном (AG) вариантах является предиктором развития неаллергической БА, а гомозиготный генотип GG и аллель G rs1800470 гена TGF- $\beta1$ играют протективную роль в отношении возникновения неаллергической БА.

Впервые показано, что носительство аллеля А *rs231775* гена *CTLA4* в гомозиготном (AA) и гетерозиготном (AG) вариантах является протективным фактором, а носительство гомозиготного генотипа GG и аллеля G *rs231775* гена *CTLA4* является фактором риска развития аллергической БА.

Наличие аллеля С полиморфизма *rs4129267* гена *IL6R* является предиктором развития неаллергической БА. Аллель Т *rs4129267* гена *IL6R* выполняет протективную роль в отношении возникновения неаллергической БА.

Практическая значимость работы

Полиморфизмы генов трансформирующего фактора роста бета-1 $(rs1800470\ TGF-\beta1)$, цитотоксического Т-лимфоцит - связанного иммуноглобулина 4 $(rs231775\ CTLA4)$ и рецептора интерлейкина 6 $(rs4129267\ IL6R)$ являются генетическими предикторами развития БА и определяют риск формирования данного заболевания.

Определение данных полиморфизмов указанных генов позволит формировать группы риска лиц, угрожаемых по развитию БА, и совершенствовать меры первичной профилактики среди них.

Внедрение результатов исследования в практику

Результаты исследования апробированы и внедрены в лечебнодиагностическую практику специализированного пульмонологического отделения КГБУЗ «КМКБ№20 им. И. С. Берзона» г. Красноярска, приемнодиагностического отделения КГБУЗ «КМКБ№4» г. Красноярска.

Теоретические и практические положения, изложенные в диссертации, используются в учебном процессе при подготовке студентов на кафедре внутренних болезней №1 КрасГМУ им. проф. В.Ф. Войно-Ясенецкого.

Основные положения, выносимые на защиту

- 1. Генетическими предикторами развития аллергической БА являются: гомозиготный генотип GG по редкому аллелю и аллель G гена цитотоксического Т-лимфоцит связанного иммуноглобулина 4 (rs231775 CTLA4).
- 2. Гомозиготный генотип AA по распространенному аллелю и аллель A гена трансформирующего фактора роста бета-1 (*rs1800470 TGF-β1*), аллель C гена рецептора интерлейкина 6 (*rs4129267 IL6R*) являются генетическими факторами риска развития неаллергической БА.
- 3. Протективное влияние в формировании предрасположенности к развитию аллергической БА оказывает аллель А в гомозиготном и гетерозиготном вариантах гена цитотоксического Т-лимфоцит связанного иммуноглобулина 4 (rs231775 CTLA4).

4. Гомозиготный генотип GG и аллель G гена трансформирующего фактора роста бета-1 (*rs1800470 TGF-β1*) и аллель T гена рецептора интерлейкина-6 (*rs4129267 IL6R*) выполняют протективную функцию в отношении риска развития неаллергической БА.

Личный вклад автора

Диссертация является самостоятельным научным трудом, выполненным на базе кафедры внутренних болезней №1 Красноярского государственного медицинского университета им. проф. В.Ф. Войно-Ясенецкого и лаборатории молекулярно-генетических исследований терапевтических заболеваний ФГБНУ «НИИ терапии и профилактической медицины» (г. Новосибирск).

Автор лично принимал участие во всех этапах выполнения работы: осуществлялось обследование больных БА и оценка их клинического состояния, постановка диагноза, проведение клинико-инструментальной и молекулярно-генетической диагностики. Автором проведен поиск и анализ литературы по теме диссертации, статистическая обработка результатов, анализ полученного материала, написание публикаций и диссертации.

Апробация основных положений работы

Основные положения исследования доложены и обсуждены на краевой конференции «Актуальные пульмонологии, вопросы аллергологии, (Красноярск, 2015 г.), а также на заседании проблемной иммунологии» терапии ГБОУ ВПО «Красноярский государственный комиссии ПО медицинский университет им. проф. В.Ф. Войно-Ясенецкого Министерства здравоохранения Российской Федерации» 29.06.2015 г.

Публикации

Опубликованы по теме диссертации 4 работы в рецензируемых журналах, входящих в перечень ВАК РФ, и 1 методические рекомендации.

Структура и объем работы

Материал диссертации изложен на 190 страницах, иллюстрирован 9 рисунками и 72 таблицами. Работа состоит из введения, глав: обзора литературы, материалов и методов исследования, результатов собственных

исследований, заключения, выводов, практических рекомендаций и списка литературы. Библиографический указатель включает 269 источников: 85 отечественных и 184 зарубежных.

СОДЕРЖАНИЕ РАБОТЫ

В соответствии с Хельсинской декларацией, для проведения диссертационного исследования получено разрешение Локального этического комитета (протокол исследования № 36/2011 от 22.12.2011г.) при «КрасГМУ им. проф. В.Ф. Войно-Ясенецкого» Минздрава России и было подписано информированное согласие на проведение молекулярно-генетического исследования всеми участниками.

Материалы и методы исследования

Согласно цели и задачам исследования, с учетом критериев включения и исключения, было проведено обследование 100 человек с БА, которые составили основную группу исследования. *Критерии включения в основную группу:* наличие подтвержденного диагноза БА; больные БА европеоидного происхождения, проживающие в г. Красноярске; способность больных выполнять необходимые процедуры; согласие больных на исследование. *Критерии исключения:* больные с неуточненным диагнозом БА; больные БА с другими хроническими и острыми заболеваниями легких (ХОБЛ, рак легких, туберкулез, пневмония, ТЭЛА и др.); больные БА с тяжелой сопутствующей и сочетанной патологией (инфаркт миокарда, нестабильная стенокардия, застойная сердечная недостаточность и др.); больные не способные правильно выполнять дыхательный маневр при определении функции внешнего дыхания.

Диагноз БА, степень тяжести, уровень контроля и фенотип заболевания были установлены в соответствии с критериями «Глобальной стратегии лечения и профилактики бронхиальной астмы» 2011 г. [GINA 2011]. Диагноз БА у всех больных был ранее установлен, о чем свидетельствовала представленная медицинская документация. Больные БА при включении в исследование находились в стабильном состоянии, вне обострения заболевания в течение последних двух месяцев.

Распределение лиц основной и контрольной групп по полу, их средний возраст и медиана возраста представлены в таблице 1.

Таблица 1 Половозрастная характеристика больных БА и лиц контрольной группы

	Пол	Коли- чество	M± σ	[Me; Q ₂₅ - Q ₇₅]	Значи- мость разли- чий
Основная группа	всего	n=100	46,73±16,466	50,00;[37,00-57,00]	p=0,059
	мужчины	n=17	31,44±15,616	27,50; [21,00-48,50]	p=0,270
АБА	женщины	n=51	49,02±15,189	50,00; [40,00-61,00]	p=0,200
	всего	n=68	44,82±16,948	47,00; [31,00-57,00]	p=0,883
	мужчины	n=8	47,48±20,017	55,00; [34,00-60,50]	p=0,500
НАБА	женщины	n=24	52,38±9,251	52,50; [47,25-58,75]	p=0,130
	всего	n=32	51,12±23,260	53,00; [45,50-58,50]	p=0,198
V axama a va	мужчины	n=230	43,30±16,216	51,00; [29,00-60,50]	p=0,072
Контроль- ная группа	женщины	n=415	38,01±20,750	30,01; [23,01-58,00]	p=0,391
	всего	n=645	42,52±24,076	51,00; [30,01-60,00]	p=0,587

Примечания. р — различия между группами по количественным признакам проводили с использованием критерия Манна-Уитни

Все больные БА были подразделены на 2 подгруппы. 1-ю подгруппу составили больные аллергической БА в количестве 68 человек, медиана возраста - 47,0 [31,0;57,0] лет, из которых было 17 мужчин, медиана возраста 27,5 [21,0;48,5] лет и 51 женщина, медиана возраста 50,0 [40,0;61,0] лет. 2-ю подгруппу - больные неаллергической БА в количестве 32 человек, медиана возраста - 53,0 [45,5;58,5] лет, из которых было 8 мужчин, медиана возраста 55,0 [34,0;60,5] лет и 24 женщины, медиана возраста 52,5 [47,25;58,75] лет.

При оценке полиморфных аллельных вариантов изучаемых генов у больных БА, в качестве контроля использовали популяционную выборку относительно здоровых лиц без бронхолегочной патологии жителей Октябрьского района г.

Новосибирска, обследованных в рамках международных проектов MONICA (Multinational MONItoring of trends and determinants in CArdiovascular disease) и НАРІЕЕ (Health, Alcohol and Psychosocial factors In Eastern Europe). В контрольной группе было 645 человек, медиана возраста - 51,0 [30,01;60,0] лет, из которых было 230 мужчин, медиана возраста 51,0 [29,0;60,5] лет и 415 женщин, медиана возраста 30,01 [23,01-58,0] лет. Данные генотипирования предоставлены ФГБНУ «НИИТПМ» (г. Новосибирск) в рамках договора о сотрудничестве от 01.12.2008 г. (таблица 1).

Методы обследования

Всем больным БА было проведено клинико-инструментальное исследование по следующей программе: клинический осмотр, оценка атопического статуса, оценка ФВД и молекулярно-генетические исследования.

Оценку атопического статуса проводили по данным анамнеза, наличию атопических заболеваний и данным аллергологических проб (использованы результаты аллергологических проб из амбулаторных карт больных и их родственников). Для количественной оценки уровня контроля над симптомами БА использовался ACQ-5 (Asthma Control Questionnaire 5, официальное название «Вопросник по контролю симптомов астмы») тест. Изучение параметров функции внешнего дыхания проводилось методом компьютерной спирографии на аппарате КМ-AP-01 «Диамант» 2010г. (комплекс мониторной кардио-респираторной системы и гидратации тканей). По результатам спирографии (СПГ) определялись наличие, тип и степень выраженности вентиляционных нарушений функции легких. Анализировали следующие показатели: объем форсированного выдоха за первую секунду маневра ФЖЕЛ $(O\Phi B_1)$, форсированная жизненная емкость легких (ФЖЕЛ), отношение $O\Phi B_1/\Phi XEЛ$. Для выявления обратимости бронхиальной обструкции (БО) проводилась проба с сальбутамолом в дозе 400 мкг. Проба на обратимость БО выполнялась согласно стандартам для проведения бронходилятационных тестов и считалось положительной при приросте ОФВ1 более, чем на 12% (200 мл) по сравнению с исходными значениями. Всем больным проводилось

флюорографическое исследование органов грудной клетки на стандартном флюорографе «ПроСкан-7000» (малодозовом цифровом сканирующем — ту9442 — 013 - 42254364 - 2004).

Молекулярно-генетическое ФГБНУ исследование проводилось "НИИТПМ" г. Новосибирска. Всем больным после венепункции кубитальной вены производился забор 10,0 мл венозной крови в одноразовые стерильные вакуумные пробирки с ЭДТА (этилендиаминтетрауксусная кислота) (ВD Vacutainer®). Выделение дезоксирибонуклеиновой кислоты (ДНК) лейкоцитов крови проводилась методом фенол-хлороформной экстракции [Смит К.и соавт., 1990; Шабалина В.Н., 1994]. В исследовании изучались 6 ОНП, ассоциированных с развитием БА по данным полногеномных ассоциативных исследований (GWAS): rs1800470 гена $TGF-\beta1$ (transforming growth factor, beta 1); rs1051730 гена CHRNA3 (cholinergic receptor, nicotinic, alpha 3 (neuronal)); rs1828591 гена HHIP (hedgehog-interacting protein); rs4129267 гена IL6R (interleukin 6 receptor); rs1799895 гена SOD3 (superoxide dismutase 3, extracellular); rs231775 гена CTLA4 (cytotoxic T-lymphocyte associated antigen-4).

При статистической обработке материала применяли стандартный алгоритм статистических процедур, при этом методы статистической обработки использовались в зависимости от характера учетных признаков и числа групп [Афифи А., Эйзен С., 1982]. Для определения характера сравнения распределения количественных показателей применялся критерий Шапиро-Уилкса. При отсутствии нормального распределения описательная статистика представлялась в виде медианы и квартилей. Для определения значимости различий при множественных сравнениях использовали критерий Крускала-Уоллиса, для парных сравнений – критерий Манна-Уитни. При нормальном распределении показателей описательная статистика представлена в виде средней арифметической и среднеквадратического отклонения. Статистическая значимость различий нормально распределенных показателей в сравниваемых группах определялась с использованием критерия Стьюдента (t-критерия) [Шабалина В.Н., 1994]. Качественные критерии представлены в виде процентных долей со стандартной ошибкой доли [Флейс Дж., 1989]. Расчет ошибок для 0% производился по методике А.М. Меркова [Мерков А. М., Поляков Л. Е.,1974]. При сравнении качественных показателей с целью оценки статистической значимости различий между группами использовали метод хиквадрат (χ^2), с поправкой на непрерывность. При ожидаемых значениях признака 5 и менее в таблицах «2×2» использовался точный критерий Фишера. Различия во всех случаях оценивали, как статистически значимые при р<0,05.

Сила связи между изученными признаками определялась при помощи коэффициента корреляции Пирсона и при непараметрическом распределении – коэффициента корреляции Спирмена. Сила корреляционной связи между признаками оценивалась по коэффициенту r (таблица 2).

Таблица 2 Распределение значений коэффициента корреляции

Характеристика связи	Прямая	Обратная
Связи нет	0	0
Слабая	от 0 до 0,3	от 0 до -0,3
Средняя	от 0,3 до 0,7	от -0,3 до -0,7
Сильная	от 0,7 до 1	от -0,7 до -1
Полная (функциональная)	+1	-1

Статистическая значимость коэффициента корреляции устанавливалась по величине средней ошибки (m_r) вычислялась по формуле:

$$m_r = \frac{1 - r^2}{\sqrt{n}}$$

где n – число наблюдений, r - коэффициент корреляции.

Если отношение коэффициента корреляции (r) к его средней ошибке (m_r) составляло 3 и более, коэффициент корреляции считали статистически значимым (p<0,05). Подсчитывали отношение шансов (ОШ - odd ratio) для оценки ассоциации между определенными генотипами и риском развития заболевания по стандартной формуле ОШ = $(a \times d)/(b \times c)$, где a - частота аллеля (генотипа) в выборке больных, b - частота аллеля (генотипа) в контрольной

группе, c — сумма частот остальных аллелей (генотипов) в выборке больных, d — сумма частот остальных аллелей (генотипов) в контрольной выборке. ОШ указан с 95%-ным доверительным интервалом (Confidence interval CI). Оценка риска развития заболевания рассчитывалось по стандартной методике с помощью четырехпольной таблицы (таблица 3).

Таблица 3

	Результативный признак	Результативный признак
Фактор «+»	a	В
Фактор «-»	С	d

ОШ считали статистически значимым, если в его доверительный интервал не попадала единица. Статистическая обработка материала проведена с использованием пакета прикладных программ «Excel 2010», «Statistica for Windows 7.0» и «SPSS», версии 19.0 [Боровиков В.П., 2001; Поллард Д., 1982].

Репрезентативность выборки:

Объем выборки определялся по стандартной формуле:

$$n = \frac{t^2 \times p \times q}{\Delta^2}$$
 где,

р - величина показателя изучаемого признака;

q - (100-р); t - доверительный коэффициент, показывающий какова вероятность того, что размеры показателя не будут выходить за границы предельной ошибки (обычно берется t=2, что обеспечивает 95% вероятность безошибочного прогноза); Δ — предельная ошибка показателя [Зайцев В.М., 2003]. Доверительный коэффициент был принят равным 2, что обеспечило вероятность безошибочного прогноза в 95%. Для предельной ошибки показателя, установленной в пределах 5%, фактическое число единиц наблюдения, включенных в исследование (745) превышало расчетную.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Работа была проведена в рамках комплексной научной темы ГБОУ ВПО КрасГМУ: «Клинико-генетические аспекты мультифакториальных заболеваний», номер гос.регистрации – 01200807479 (РК№479-02).

Таблица 4 Основные анамнестические признаки у больных бронхиальной астмой в зависимости от фенотипа заболевания

Признак	Признаки		АБА (n=68)	НАБА (n=32)	Значимость различий
	легкая	абс/%	31/45,6	12/37,5	p**=0,518
Степень тяжести	средняя	абс/%	33/48,5	15/46,9	p**=0,909
	тяжелая	абс/%	4/5,9	5/15,6	p**=0,204
Давность заболевания, годы		Me[Q ₁ ;Q ₃]	6,00 [4,00; 14,00]	9,5 [4,00; 13,75]	p*=0,097
	18,5-29,9	абс/%	18/26,5	17/53,1	p**=0,064
ИМТ	<30,0-34,9	абс/%	24/35,3	7/21,9	p**=0,343
YIIVI I	<35,0-39,9	абс/%	26/38,2	4/12,5	p**=0,635
	≥40,0	абс/%	-	4/12,5	p**=0,624
Отягощенная наследственность	Есть	абс/%	19/27,9	0/0	p**=0,081
по БА	Нет	абс/%	49/72,1	32/100,0	p**=0,135
Уровень IgE в крови		Me[Q ₁ ;Q ₃]	141,00 [98,00; 250,75]	12,00 [7,00; 17,75]	p*=0,062

Примечание. p^* — различия между группами по количественным рассчитаны с использованием критерия Манна-Уитни; p^{**} - различия между группами по качественным признакам рассчитаны с использованием критерия χ^2 .

В зависимости от тяжести течения БА больные распределились следующим образом: легкая БА диагностирована у 43 (43,0%±5,0) человек, среднетяжелая БА - у 48 (48,0%±5,0) человек и тяжелая БА - у 9 (9,0%±2,9) человек. Статистически значимых различий между лицами с аллергической и неаллергической БА в зависимости от степени тяжести болезни не получено (таблица 4). На момент включения в исследование у 22 (22,0%±4,1) больных

аллергической и неаллергической БА наблюдалось контролируемое течение астмы, у 65 (65,0%±4,8) больных - частично контролируемое и у 13 (13%±3,4) человек контроль над заболеванием отсутствовал. У большей части больных БА регистрировался повышенный ИМТ. Сравнительный анализ показателей клинического течения астмы продемонстрировал различия по дебюту заболевания и причинам обострения. Отмечено преобладание раннего дебюта заболевания у больных аллергической БА и более позднего начала заболевания среди лиц с неаллергической БА (таблица 5).

Таблица 5 Распределение больных в зависимости от дебюта бронхиальной астмы

Дебют		БА (n=100) АБА НАБА (n=68) (n=32)						
	абс.	%	±m	абс.	%	±m		
До 18 лет	9	13,2	4,1	1	3,1	3,1	p<0,05	
После 18 лет	54	79,4	4,9	22	68,8	8,2	p<0,05	
Старше 56 лет	5	7,4	3,2	9	28,1	28,1	p<0,05	

Примечание: при сравнении качественных показателей использовали метод χ^2 , с поправкой на непрерывность.

Таблица 6 Распределение больных бронхиальной астмой в зависимости от причины обострения

						1	
Причина обострения		Значимость различий					
	абс.	(n=68) %	±m	абс.	(n=32) %	±m	•
Инфекция	29	42,6	6,0	32	100,0	0,0	p<0,05
Аллерген	6	8,8	3,4	0	0	0,0	p>0,05
Инфекция + Аллерген	33	48,5	6,1	0	0	0,0	p<0,05

Примечание: при сравнении качественных показателей использовали метод χ^2 , с поправкой на непрерывность.

Изучение анамнестических данных у больных основной группы показало, что у 33 (48,5%±6,1) человек с аллергической БА ведущей причиной

обострения было сочетание инфекционного и аллергического компонентов (ремонт в квартире, воздействие домашней пыли и др.), а у 32 (100,0%±0,0) человек с неаллергической БА основной причиной обострения была инфекция (таблица 6).

У 38 (38,0%±4,1) больных БА наблюдались различные сердечнососудистые заболевания. ГБ диагностирована у 31 (31,0%±4,6) человека. ИБС, отмеченная у 6 (6,0%±2,4) больных БА, была представлена стабильной стенокардией второго функционального класса, и у 1 (1,0%±1,0) больного было аритмии. мерцательной Патология ЖКТ нарушение ритма В виде диагностирована у 5 (5,0%±2,2) больных БА и была в стадии ремиссии (данная анамнестически). У 33 $(48,5\%\pm6,1)$ информация уточнялась аллергической БА наблюдались другие аллергические заболевания в виде ринита, дерматита и конъюнктивита.

С целью изучения роли полиморфизма rs1800470 гена TGF- $\beta 1$ в развитии БА проведено молекулярно-генетическое исследование 93 больных БА и 282 человека из контрольной группы. В результате проведенного исследования rs1800470 гена $TGF-\beta 1$ выявлены существенные отличия в распределении частот генотипов и аллелей по гену TGF- β у больных неаллергической БА в сравнении с контролем (таблица 7). Среди больных неаллергической БА генотип AA ОНП rs1800470 гена $TGF-\beta 1$ встречался чаще, чем среди лиц группы контроля. Различия между группами были статистически значимыми (р=0,049). Наряду с этим, в группе больных неаллергической БА наблюдалось отсутствие редких гомозигот $GG(0.0\%\pm0.0)$ по сравнению с группой контроля $(14,4\%\pm2,1)$; (ОШ=1,128; 95% ДИ=1,081-1,176); p<0,05, т.е. достигало уровня статистической значимости. Частота носителей аллеля A гена *TGF-β1* среди больных неаллергической БА (77,4%±5,3) была выше, чем в группе контроля $(62,6\%\pm2,0)$; p<0,05. А частота носителей аллеля G была ниже среди больных неаллергической БА (22,6%±5,3) в сравнении с группой контроля (37,4%±2,0) (OШ=2,049; 95% ДИ = 1,103-3,807) (таблица 7).

Таблица 7 Частота встречаемости генотипов и аллелей *rs1800470* гена *TGFβ1* среди больных неаллергической бронхиальной астмой и контрольной группой

Полиморфизм гена <i>TGF-β1</i>	НАБА (n= 31)			Контр	р		
-	абс.	%	±m	абс.	%	±m	
AA	17	54,8	8,9	111	39,4	2,9	
AG	14	45,2	8,9	131	46,5	3,0	p<0,05
GG	0	0,0	0,0	40	14,2	2,1	
Итого	31	100,0		282	100,0		

Полиморфизм гена	НАБА (n=31)			Контро	р			
TGF-β1	абс.	%	±m	абс.	%	±m	•	
Аллель А	48	77,4	5,3	353	62,6	2,0		
Аллель G	14	22,6	5,3	211	37,4	2,0	p<0,05	
Итого	62	100,0		564	100,0			
ОШ; 95%ДИ ОШ		2,049; 1,103-3,807						
Генотип АА	17	54,8	8,9	111	39,4	2,9		
Генотип AG+GG	14	45,2	8,9	171	60,6	2,9	p>0,05	
Итого	31	100,0		282	100,0			
ОШ; 95%ДИ ОШ			1,	871; 0,887-3	3,947			
Генотип AA+AG	31	100	0,0	242	85,8	2,1		
Генотип GG	0	0	0,0	40	14,2	2,1	p<0,05	
Итого	31	100,0		282	100,0			
ОШ; 95%ДИ ОШ			1,	128; 1,081-	1,176			

Примечание: p - уровень значимости при сравнении распределения генотипов с показателями группы контроля по критерию γ^2

Таким образом, при изучении вклада полиморфизма гена TGF- $\beta 1$ мы установили ассоциацию с развитием неаллергической БА. Носительство аллеля А в гомозиготном (AA) и гетерозиготном (AG) вариантах свидетельствует о значимом вкладе в риск развития неаллергической БА, а гомозиготный генотип гена TGF- $\beta 1$ GG и носительство аллеля G можно рассматривать как протективный фактор развития неаллергической БА. Результаты нашего исследования согласуются с данными некоторых зарубежных авторов [Wu H. et al., 2010; Li H. et al. 2007; Yucesoy B. et al., 2015; Bottoms S. E. et al, 2010] и не совпадают с данными Sheena D. (2012) и Che Z. (2014), которые в своих исследованиях определили связь полиморфизмов C-509T и T869C гена TGF- $\beta 1$

с предрасположенностью к развитию БА. Кроме того, согласно данным некоторых авторов, генотип АА данного гена показал протективную роль в отношении развития БА [Sheena D. et al., 2012; Che Z. et al., 2014].

С целью изучения роли полиморфизма гена *rs231775 CTLA4* в развитии БА прогенотипировано 97 больных БА и 338 человек из контрольной группы. В нашем исследовании выявлены статистически значимые различия частот генотипов и аллелей в группе больных аллергической БА в сравнении с контрольной группой (таблица 8).

Таблица 8 Частота встречаемости генотипов и аллелей среди больных *rs231775* гена *CTLA4* аллергической бронхиальной астмой и контрольной группой

Полиморфизм гена <i>CTLA4</i>	I I I I I I I I I I I I I I I I I I			Конт	р		
Tena CILA4	абс.	%	±m	абс.	%	±m	
AA	12	18,2	4,7	93	27,5	2,4	
AG	30	45,5	6,1	171	50,6	2,7	p<0,05
GG	24	36,4	5,9	74	21,9	2,2	
Итого	66	100,0		338	100,0		

Полиморфизм		АБА (n=66)		Контј	ольная г (n=338)	руппа	р
гена <i>CTLA4</i>	абс.	%	±m	абс.	%	±m	•
Аллель А	54	40,9	4,3	357	52,8	1,9	
Аллель G	78	59,1	4,3	319	47,2	1,9	p<0,05
Итого	132	100,0		676	100,0		
ОШ; 95%ДИ ОШ			1,0	615; 1,107	7-2,358		
Генотип АА	12	18,2	4,7	93	27,5	2,4	
Генотип AG+GG	54	81,8	4,7	245	72,5	2,4	p>0,05
Итого	66	100,0		338	100,0		
ОШ; 95%ДИ ОШ			1,	709; 0,874	1-3,333		
Генотип AA+AG	42	63,6	5,9	264	78,1	2,2	
Генотип GG	24	36,4	5,9	74	21,9	2,2	p<0,05
Итого	66	100,0		338	100,0		
ОШ; 95%ДИ ОШ			2,0	036; 1,160)-3,584		

Примечание: p - уровень значимости при сравнении распределения генотипов с показателями группы контроля по критерию χ^2

Среди больных аллергической БА наблюдалось снижение носителей гомозиготного генотипа AA по распространенному аллелю (18,2%±4,7) в

сравнении с группой контроля (27,5%±2,4). Частота гетерозиготного генотипа АG была ниже у больных аллергической БА (45,5%±6,1) по сравнению с группой контроля $(50,6\%\pm2,7)$, что имело также статистически значимое различие. А частота гомозиготного генотипа GG у этих больных (36,4%±5,9) была выше, чем в группе контроля (21,9% \pm 2,2; p<0,05). Аллель А гена *CTLA4* реже встречался среди больных аллергической БА (40,9%±4,3) по сравнению с контрольной группой $(52.8\%\pm1.9)$, p<0.05. Наряду с этим, наблюдалось статистически значимое увеличение частоты аллеля G среди больных аллергической БА $(59,1\%\pm4,3)$ по сравнению с группой контроля $(47,2\%\pm1,9)$ (ОШ=1,615; 95% ДИ=1,107-2,358) (таблица 8). Таким образом, на основании этих данных гомозиготный генотип GG и носительство аллеля G гена CTLA4 можно рассматривать как фактор риска развития аллергической БА, а носительство аллеля A в гомозиготном и гетерозиготном вариантах гена CTLA4 - протективным фактором в отношении развития данного заболевания. Нами проведен корреляционный анализ полиморфных аллельных вариантов гена CTLA4 (AA, AG, GG) с клиническими проявлениями и лабораторными показателями у больных БА. В корреляционный анализ были включены следующие показатели: $O\Phi B_1$, $O\Phi B_1/\Phi WEЛ$ и IgE. В группе больных БА установлена положительная взаимосвязь (слабой силы) между повышенным уровнем в сыворотке крови IgE и наличием гомозиготного генотипа GG гена CTLA4 (r=0,216, p=0,034). Также обнаружена прямая коррелятивная связь ОФВ₁/ФЖЕЛ (средней силы) между отношением И присутствием гомозиготного генотипа GG гена CTLA4 (r=0,349, p=0,000). Таким образом, носительство гомозиготного генотипа GG гена CTLA4 коррелирует с уровнем иммуноглобулина E в сыворотке крови и показателем ОФВ₁/ФЖЕЛ.

Ранее рядом авторов была изучена и доказана роль полиморфизма 49A/G гена CTLA4 в развитии аллергического ринита и БА [Alieva V.S. et al., 2010; Oh K.Y et al., 2010; Nie W. et al., 2012]. Результаты нашего исследования также показали взаимосвязь полиморфизма rs231775 гена CTLA4 с риском развития аллергической БА.

У больных БА и лиц контрольной группы исследовано распределение частот генотипов и аллелей *rs1828591* гена *HHIP*, для этого было прогенотипировано 99 больных БА и 290 человек из контрольной группы. В результате нами не установлено статистически значимого преобладания ни по одному из генотипов между больными БА и лицами контрольной группы.

С целью изучения роли полиморфизма rs4129267 гена IL6R в развитии БА прогенотипировано 100 больных БА и 290 человек из контрольной группы. Изучение распределения частот аллелей гена IL6R у больных с разными вариантами БА показало значимое преобладание частоты носителей аллеля С гена IL6R среди больных неаллергической БА (80,0%±4,3), чем в группе контроля (67,6%±1,9) (таблица 9).

Таблица 9 Частота встречаемости аллелей *rs4129267* гена *IL6R* среди больных неаллергической бронхиальной астмой и контрольной группой

Полиморфизм гена	Hz	АБА (n=3	32)	Контро	р		
IL6R	абс.	%	±m	абс.	%	±m	
Аллель С	68	80,0	4,3	392	67,6	1,9	
Аллель Т	17	20,0	4,3	188	32,4	1,9	p<0,05
Итого	85	100,0		580	100,0		
ОШ; 95%ДИ ОШ		1,918; 1,097-3,356					

Примечание: p - уровень значимости при сравнении распределения генотипов с показателями группы контроля по критерию χ^2

Частота носителей аллеля Т была статистически значимо ниже среди больных неаллергической БА ($20,0\%\pm4,3$) в сравнении с группой контроля ($32,4\%\pm1,9$) (ОШ=1,918; 95% ДИ=1,097-3,356) (таблица 9).

Нами было исследовано распределение частот генотипов и аллелей гена IL6R у больных БА и лиц контрольной группы в зависимости от пола. Частота носителей аллеля С rs4129267 гена IL6R среди мужчин с неаллергической БА (75,0%±10,8) была выше, чем в группе контроля (68,3%±3,1); p<0,05. А частота носителей аллеля Т была статистически значимо ниже среди мужчин с неаллергической БА (25,0%±10,8) в сравнении с группой контроля (31,7%±3,1). Данные различия достигали уровня статистической значимости (таблица 10).

Частота носителей аллеля С rs4129267 гена IL6R среди женщин с неаллергической БА (72,9%±6,4) была выше, чем в группе контроля (67,1%±2,5); p<0,05. А частота носителей аллеля Т была статистически значимо ниже среди женщин с неаллергической БА (27,1%±6,4) в сравнении с группой контроля (32,9%±2,5). Данные различия достигали уровня статистической значимости (таблица 10).

Таблица 10 Частота встречаемости аллелей *rs4129267* гена *IL6R* среди мужчин и женщин с неаллергической бронхиальной астмой и контрольной группой

Полиморфизм	Мужчины с НАБА (n=8)			Контроль, мужчины (n=115)			р
гена <i>IL6R</i>	абс.	%	±m	абс.	%	±m	
Аллель С	12	75,0	10,8	157	68,3	3,1	
Аллель Т	4	25,0	10,8	73	31,7	3,1	p<0,05
Итого	16	100,0		230	100,0		
ОШ; 95%ДИ ОШ	7,904; 2,777-22,496						
	Женщины с НАБА			Контроль, женщины			
Полиморфизм	(n=8)			(n=115)			
гена <i>IL6R</i>	абс.	%	±m	абс.	%	±m	-0.05
Аллель С	35	72,9	6,4	235	67,1	2,5	p<0,05
Аллель Т	13	27,1	6,4	115	32,9	2,5	
Итого	48	100,0		350	100,0		
ОШ; 95%ДИ ОШ	2,560; 1,358-4,825						

Примечание: p - уровень значимости при сравнении распределения генотипов с показателями группы контроля по критерию χ^2

Учитывая полученные данные, носительство аллеля С полиморфизма rs4129267 гена IL6R является предиктором развития неаллергической БА, как среди общего числа больных, так и среди мужчин и женщин. А носительство аллеля Т полиморфизма rs4129267 гена IL6R носит протективный характер в отношении неаллергический БА вне зависимости от пола. Полученные данные не противоречат результатам проведенных ранее исследований, свидетельствующих об участии гена IL6R в развитии БА. В нашей работе удалось подтвердить данные зарубежных исследований по гену IL6R.

Изучен полиморфизм *rs1051730* гена *CHRNA3* у 97 больных БА и 289 человек из контрольной группы. По результатам нашего исследования,

статистически значимых различий в частотах генотипов и аллелей гена *CHRNA3* между контрольной группой и больными БА не получено.

С целью изучения роли полиморфизма rs1799895 гена SOD3 в развитии БА прогенотипировано 97 больных БА и 105 человек из контрольной группы. ОНП rs1799895 гена SOD3 оказался непригоден для использования в качестве маркера на нашей популяции в связи с низкой частотой патогенного аллеля.

Подводя итоги полученным результатам исследования, следует отметить, что в данной работе впервые изучен полиморфизм генов TGF- $\beta 1$, CTLA4, IL6R, CHRNA3, SOD3 среди жителей г. Красноярска, страдающих БА. Впервые показано защитное действие и вклад в развитие БА полиморфизмов rs1800470 гена $TGF\beta 1$, rs231775 гена CTLA4 и rs4129267 гена IL6R.

выводы

- 1. Анализ клинического течения при аллергической БА и неаллергической БА продемонстрировал статистически значимые различия между подгруппами по дебюту болезни и причинам, способствующим обострению заболевания. Отмечено преобладание раннего дебюта (до 18 лет) заболевания у больных аллергической БА (13,2%) и более позднего начала заболевания среди лиц с неаллергической БА (28,1%). Наиболее значимыми факторами, способствующими развитию обострения заболевания у больных аллергической БА, явились аллергический компонент в сочетании с инфекционным (48,5%), а у больных неаллергической БА инфекционный компонент (100,0%).
- 2. Предикторами развития аллергической бронхиальной астмы являются: гомозиготный генотип GG и аллель G rs231775 гена CTLA4 [OШ=1,615].
- 3. Гомозиготный генотип GG гена CTLA4 у больных аллергической бронхиальной астмой коррелирует с повышенным уровнем иммуноглобулина E в сыворотке крови и показателем $O\Phi B_1/\Phi XEJ$.
- 4. Риск развития неаллергической бронхиальной астмы возрастает при носительстве: аллеля А rs1800470 гена TGF- $\beta1$ в гомозиготном и гетерозиготном вариантах [ОШ=1,128] и аллеля С rs4129267 гена IL6R [ОШ=1,918].

- 5. Носительство аллеля А *rs231775* в гомозиготном и гетерозиготном вариантах гена *CTLA4* [ОШ=2,036] играет протективную роль в отношении развития аллергической бронхиальной астмы.
- 6. Гомозиготный генотип GG и аллель G rs1800470 гена $TGF-\beta1$ [ОШ=1,128], аллель Т rs4129267 гена IL6R [ОШ=7,904; 2,560] независимо от пола выполняют протективную функцию в отношении формирования неаллергической бронхиальной астмы.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Выявленные генетические факторы риска развития бронхиальной астмы (носители аллеля А rs1800470 гена $TGF-\beta 1$ в гомозиготном и гетерозиготном вариантах, гомозиготного генотипа GG, аллеля G rs231775 гена CTLA4 и аллеля \mathbf{C} rs4129267 гена IL6R) необходимо учитывать при составлении индивидуальных профилактических программ, что позволит достичь лучших профилактике диагностике И данного заболевания результатов подверженных лиц.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Изучение ассоциации однонуклеотидного полиморфизма RS1800470 гена трансформирующего фактора роста β1 (*TGF-β1*) с риском развития бронхиальной астмы / *А.В. Разводовская*, И.И. Черкашина, С.Ю. Никулина, В.А. Шестовицкий, М.И. Воевода, В.Н. Максимов // Сибирское медицинское обозрение. 2014. №2 (86). С. 17-22.
- 2. Изучение ассоциации однонуклеотидного полиморфизма RS4129267 гена рецептора интерлейкина-6 (*IL6R*) с риском развития бронхиальной астмы / *A.B. Разводовская*, И.И. Черкашина, С.Ю. Никулина, В.А. Шестовицкий, М.И. Воевода, В.Н. Максимов // Сибирский медицинский журнал. 2014. Т. 126, №3. С. 31-35.
- 3. Изучение ассоциации однонуклеотидных полиморфизмов RS1800470 гена трансформирующего фактора роста $\beta1$ (*TGF-\beta1*) и RS231775 гена

цитотоксического Т-лимфоцит — связанного иммуноглобулина-4 (*CTLA4*) с риском развития бронхиальной астмы / А.В. *Разводовская*, И.И. Черкашина, С.Ю. Никулина, В.А. Шестовицкий, М.И. Воевода, В.Н. Максимов, А.Б. Аверьянов // **Бюллетень физиологии и патологии дыхания**. - 2014. - №54. - С. 23-29.

4. Изучение ассоциации однонуклеотидного полиморфизма RS231775 гена цитотоксического Т-лимфоцит — связанного иммуноглобулина-4 (*CTLA4*) с риском развития бронхиальной астмы / И.И. Черкашина, *А.В. Разводовская*, С.Ю. Никулина, В.А. Шестовицкий, М.И. Воевода, В.Н. Максимов, А.Б. Аверьянов // Сибирское медицинское обозрение. - 2015. - №1 (91). - С. 38-42.

Методические рекомендации

1. Разводовская, А.В. Клинико-генетические основы формирования бронхиальной астмы: метод. рекомендации для последиплом. образования врачей / А.В. Разводовская, И.И. Черкашина, С.Ю. Никулина. – Красноярск: КрасГМУ, 2015. – 39 с.

СПИСОК ИСПОЛЬЗОВАННЫХ СОКРАЩЕНИЙ

	CHILL	THE HOLLD SO DE HILLDEN CONTENING
АБА	-	аллергическая бронхиальная астма
БА	-	бронхиальная астма
ГБ	-	гипертоническая болезнь
ДИ	-	доверительный интервал
ИБС	-	ишемическая болезнь сердца
НАБА	-	неаллергическая бронхиальная астма
ОШ	-	отношение шансов
ХОБЛ	-	хроническая обструктивная болезнь легких
ЯБлДПК	-	язвенная болезнь луковицы двенадцатиперстной кишки
Жак	-	язвенная болезнь желудка
ACQ-5	-	Asthma Control Questionnaire 5, официальное название «Вопросник
		по контролю симптомов астмы»)
CHRNA3	-	ген никотинового рецептора 3
CTLA4	-	ген цитотоксический Т-лимфоцит – связанный иммуноглобулин 4
HHIP	-	белковый ген регуляции тканей
IgE	-	иммуноглобулин Е
IL6R	-	ген рецептор интерлейкина 6
SOD3	-	ген внеклеточной супероксиддисмутазы
TGFβ1	-	ген трансформирующего фактора роста бета – 1