Федеральное государственное бюджетное образовательное учреждение высшего образования «Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации

Фармацевтический колледж

Математика

Сборник заданий с эталонами ответов для самостоятельной подготовки студентов к экзамену на базе основного общего образования

УДК 51(076.02) ББК 22.1 М34

Составитель: И. П. Клобертанц

Математика: сб. заданий с эталонами ответов для самостоятельной подготовки студентов к экзамену на базе основного общего образования / сост. И. П. Клобертанц; Фармацевтический колледж. — Красноярск: тип. КрасГМУ, 2019. - 31 с.

Сборник заданий с эталонами ответов для самостоятельной подготовки студентов к экзамену по математике на базе основного общего образования по дисциплине БД.05. Математика предназначена для внеаудиторной работы обучающихся, соответствует требованиям ФГОС СОО (2014 г.), рабочей программы дисциплины (2018 г.); адаптирована к образовательным технологиям с учетом специфики обучения.

Рекомендован к изданию по решению методического совета фармацевтического колледжа (Протокол № __ от 23. 09. 2019 г.)

УДК 51(076.2) ББК 22.1

- © ФГБОУ ВО КрасГМУ им. проф. В.Ф.Войно-Ясенецкого Минздрава России, Фармацевтический колледж, 2019
- © Клобертанц И. П., составление, 2019

Содержание

Введение	4
Примерный вариант экзаменационной работы	6
Задания из обязательной части	8
Задание 1	8
Задание 2	9
Задание 3	10
Задание 4	11
Задание 5	12
Задание 6	13
Задание 7-10	14
Задание 11	15
Задание 12	16
Задание 13	17
Задание 14	18
Задание 15	19
Задание 16	19
Задание 17	20
Задание 18	21
Задание 19	22
Дополнительная часть	23
Задание 20	23
Задание 21	23
Задание 22	24
Задание 23	25
Эталоны ответов:	26
УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ЛИСПИПЛИНЫ	

Введение

Сборник типовых заданий предназначен для самостоятельной подготовки студентов 1 курса во 2 семестре к экзамену по дисциплине БД.05. Математика по специальности 31.02.03 Лабораторная диагностика, 34.02.01 Сестринское дело. Метод проведения экзамена - индивидуальный. Экзаменационные

материалы для проведения письменного экзамена по дисциплине БД.05. Математика с использованием набора контрольных заданий формируются из двух частей: обязательной, включающей задания минимально обязательного уровня, правильное выполнение которых достаточно для получения удовлетворительной оценки «3», и дополнительной части с более сложными заданиями, выполнение которых позволяет повысить удовлетворительную оценку до «4» или «5».

Перечень разделов и тем, выносимых на промежуточную аттестацию:

I. Геометрия

- Прямые и плоскости в пространстве
- Многогранники
- Тела и поверхности вращения
- Измерения в геометрии
- Координаты и векторы в пространстве

II. Алгебра

- Развитие понятия о числе
- Корни, степени и логарифмы
- Основы тригонометрии
- Функции, их свойства и графики.
- Уравнения и неравенства
- III. Начала математического анализа
- IV. Комбинаторика, статистика и теория вероятностей

Критерии оценки:

За выполнение любого задания из обязательной части следующие критерии оценки заданий:

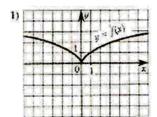
Содержание критерия	
Правильное выполнение задания	1
При выполнении задания, где необходимо привести краткое решение, за неполное	0,5
решение задания (вычислительная ошибка, описка)	
Неверное решение, неверный ответ или отсутствие ответа	0

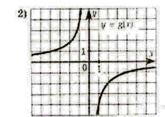
За выполнение любого задания из дополнительной части можно использовать следующие критерии оценки заданий:

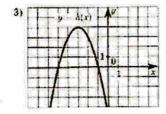
Содержание критерия		
Приведено верное обоснованное решение, приведен правильный ответ	3	
Приведено верное решение, но допущена вычислительная ошибка или описка, при	2	
этом может быть получен неверный ответ		
Решение начато логически верно, но допущена ошибка, либо решение не доведено	1	
до конца, при этом ответ неверный или отсутствует		
Неверное решение, неверный ответ или отсутствие решения	0	

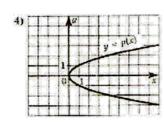
Все баллы суммируются и переводятся по шкале в отметку по пятибалльной системе.

Шкала перевода баллов в оценку по пятибалльной системе

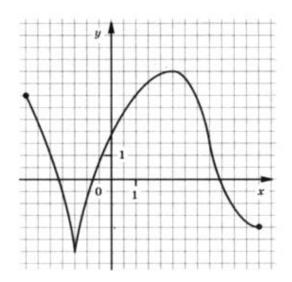

Оценка	Число баллов, необходимое для получения оценки		
«3» (удовлетворительно)	9–15		
«4» (хорошо)	16–20		
	(не менее одного задания из дополнительной части)		
«5» (отлично)	более 22		
	(не менее двух заданий из дополнительной части)		


Примерный вариант экзаменационной работы


Обязательная часть


При выполнении заданий 1-7 запишите ход решения и полученный ответ

- 1) (1 балл) Тетрадь стоит 20 рублей. Сколько тетрадей можно купить на 200 рублей после повышения цены на 25%?
- 2) (1 балл) Вычислите значение выражения $3^{-2} \cdot 8^0 + \sqrt[4]{\frac{81}{256}}$.
- 3) (1 балл) Найдите значение $\cos \alpha$, если известно, что $\sin \alpha = -\frac{5}{7}$ и $\alpha \in III$ четверти
- 4) (1 балл) Вычислите значения выражения $\log_6 120 \log_6 20$
- 5) (1 балл) Решите уравнение $3^{x+5} = 9^{x-4}$
- 6) (1 балл) Решите уравнение $\log_6(5x-2)=2$.
- 7) Определите, какой из ниже приведённых графиков соответствует четной функции. Отметьте его знаком «+», и кратко поясните, почему.



Используя график функции y = f(x) (см. рис. ниже), определите и запишите ответ:

- 8) (1 балл) промежутки возрастания и убывания функции;
- 9) (1 балл) наибольшее и наименьшее значение функции;
- 10) (1 балл) при каких значениях x -3 < f(x) < 2.

При выполнении заданий 11-15 укажите ход решения и запишите полученный ответ.

- 11) (1 балл) Тело движется по закону: $S(t) = t^2 7t + 3$. Определите, в какой момент времени скорость будет равна 3.
- 12) (1 балл) Найдите область определения функции $y = \log_2(3-x)$
- 13) (1 балл) Решите уравнение $\sqrt{3x+2} = 3$
- 14) (1 балл) Решите уравнение $\sin x 1 = 0$
- 15) (1 балл) Найдите все первообразные функции $f(x)=x^5+3x^4+5x-2$
- 16) (1 балл) Решите систему уравнений

$$\begin{cases} 2x + 3y = 8, \\ 3x + 2y = 7. \end{cases}$$

- 17) (1 балл) Решите неравенство $\frac{x-2x^2}{x-4} > 0$
- 18) (1 балл) Радиус основания конуса равен 4 см, площадь боковой поверхности вдвое больше площади основания. Найдите объем конуса.
- 19) (1 балл) В коробке лежат 5 красных, 7 зеленых и 2 синих кубика. Случайным образом из коробки берут кубик. Какова вероятность того, что из коробки взяли зеленый кубик?

Дополнительная часть

При выполнении заданий 19-22 запишите ход, обоснование решения и полученный ответ.

- 20) (3 балла) Исследовать функцию на монотонность и экстремумы: $f(x) = -\frac{1}{9}x^3 + x^2$
- 21) (3 балла) Решите систему уравнений:

$$\begin{cases} 5^{x-1} \cdot 7^y = \frac{1}{7} \\ y - x = -2 \end{cases}$$

- 22) (3 балла) Решите неравенство $\log_{\frac{1}{4}}(5x+2) \le -2$.
- 23) (3 балла) Найдите площадь фигуры, ограниченной линиями $y=x^3$, $y=x^2$ и осью ординат.

Задания из обязательной части

Задание 1.

Тема: Задача на составление математической модели

- 1) Экзамен по математике сдавали 25 студентов колледжа, что составляет треть от общего количества студентов первого курса. Сколько студентов колледжа не сдавали экзамен по математике?
- 2) Билет на автобус стоит 20 рублей. Какое наибольшее число билетов можно будет купить на 100 рублей после повышения цены билета на 30%?
- 3) В группе 24 студента, 75% из них занимаются спортом. Сколько студентов в группе занимаются спортом?
- 4) Сколько рублей будет на банковском счету через год, если положить на счет 5000 рублей под 15% годовых?
- 5) Стоимость проезда в электричке составляет 240 рублей. После нового года ожидается повышение стоимости на 15%. Сколько будет стоить проезд после нового года?
- 6) Коробка конфет стоит 60 рублей. Какое наибольшее количество коробок можно купить на 400 рублей вовремя распродажи, когда скидки составляет 20%
- 7) После повышения цены на 20% тетрадь стоит 30 рублей. Сколько стоила тетрадь до повышения цены?
- 8) До снижения цен футболка стоила 1200 рублей, а после снижения цен стала стоить 960 рублей. На сколько процентов была снижена цена?
- 9) Налог на доходы составляет 13% от заработной платы. После удержания налога на доходы Мария Константиновна получила 10440 рублей. Сколько рублей составляет заработная плата Марии Константиновны?
- 10) Налог на доходы составляет 13% от заработной платы. После удержания налога на доходы Ольга Петровна получила 10875 рублей. Сколько рублей составляет заработная плата Ольги Петровны?

Пример:

Из свежих слив выходит 35% сушенных. Сколько надо взять свежих слив, чтобы получить 140 кг сушенных? Сколько получится сушеных слив из 600 кг свежих?

Решение:

Выразим 35% в виде десятичной дроби и найдем неизвестное число по этой дроби:

35% = 0.35

140:0,35=400 кг

Чтобы получить 140 кг сушеных слив, нужно взять 400 кг свежих.

Ответим на второй вопрос задачи — сколько получится сушеных слив из 600 кг свежих? Если из свежих слив выходит 35% сушенных, то достаточно найти эти 35% от 600 кг свежих слив:

$$600 \times 0.35 = 210$$
 кг

Ответ: чтобы получить 140 кг сушеных слив, нужно взять 400 кг свежих. Из 600 кг свежих слив получится 210 кг сушенных.

Задание 2

Тема: Вычисление степенных выражений

1)
$$2^{-3} \cdot 7^0 + \sqrt[5]{\frac{32}{1024}}$$

2)
$$2^{-3} \cdot 5^0 - \sqrt[4]{\frac{16}{81}}$$

3)
$$9^{1,5} - 81^{0,5} - (0,5)^{-2}$$

4)
$$7^0 \cdot 2^{-3} + \sqrt[3]{\frac{27}{8}}$$

5)
$$25^{1,5} + (0,25)^{-0,5} - 81^{0,75}$$

6)
$$6^{-1} \cdot 7^0 + \sqrt[4]{\frac{81}{256}}$$

7)
$$2^{-3} \cdot 9^0 - \sqrt[5]{\frac{243}{32}}$$

8)
$$8^{\frac{2}{3}} \div 4^{-0.5} + 3^{0}$$

9)
$$10^{\frac{1}{5}} \cdot 2^{-\frac{6}{5}} \cdot 5^{\frac{4}{5}} - 2^0$$

10)
$$0.2^6 \cdot 5^6$$

Пример:

$$3^{-2} \cdot 9^0 - 5\sqrt{\frac{243}{32}} = \frac{1}{9} \cdot 1 - \frac{3}{2} = \frac{2 - 27}{18} = -\frac{25}{18} = -1\frac{7}{18}$$

Ответ: -1
$$\frac{7}{18}$$

Тема: Нахождение значений тригонометрических функций

- 1) Найдите значение $\cos\alpha$, если известно, что $\sin\alpha = \frac{1}{3}$ и $\alpha \in I$ четверти
- 2) Найдите значение $\cos\alpha$, если известно, что $\sin\alpha = \frac{\sqrt{3}}{2}$ и $\alpha \in \Pi$ четверти
- 3) Найдите значение $\cos\alpha$, если известно, что $\sin\alpha = -\frac{12}{13}$ и $\alpha \in III$ четверти.
- 4) Найдите значение $\sin \alpha$, если известно, что $\cos \alpha = \frac{5}{13}$ и $\alpha \in IV$ четверти
- 5) Найдите значение $\cos \alpha$, если известно, что $\sin \alpha = 0.8$ и $\alpha \in \Pi$ четверти
- 6) Найдите значение $\sin \alpha$, если известно, что $\cos \alpha = -\frac{1}{4}$ и $\alpha \in IV$ четверти
- 7) Найдите значение $\sin \alpha$, если известно, что $\cos \alpha = -\frac{\sqrt{6}}{4}$ и $\alpha \in \Pi$ четверти

Пример:

Найдите значение $\sin\alpha$, если известно, что $\cos\alpha=\frac{1}{3}$ и $\alpha\in I$ четверти

Решение:

Из основного

тригонометрического

тождества:

$$\sin^2\alpha + \cos^2\alpha = 1$$

 $\sin 2\alpha = 1 - \cos 2\alpha$

$$\sin 2\alpha = 1 - \left(\frac{1}{3}\right)^2 = \frac{8}{9}$$

$$\sin \alpha = \pm \frac{\sqrt{8}}{3}$$

$$\sin\alpha = \frac{\sqrt{8}}{3}$$

т.к в I четверти sin принимает положительные значения. Следовательно, знак не изменится.

Otbet: $\sin\alpha = \frac{\sqrt{8}}{3}$

Тема: Применение свойств логарифмов

Найдите значение выражения

- 1) $\log_2 9 \log_2 36$
- 2) $\log_3 6 \log_3 54$
- 3) $\log_2 8 + \log_2 8$
- 4) $\log_2 400 \log_2 50$
- 5) lg16+lg625
- 6) $\log_{0,3} 27 3 \log_{0,3} 10$
- 7) $\log_3 7 \log_3 \frac{7}{9}$
- 8) $\log_6 14 + \log_6 3 \log_6 7$
- 9) $\log_{12} 4 + \log_{12} 36$
- 10) $\log_{144} 3 + \log_{144} 4$

Пример:

Найдите значение выражения $\log_{12} 288 - \log_{12} 2$

Решение:

$$\log_{12} 288 - \log_{12} 2 = \log_{12} \left(\frac{288}{2}\right) = \log_{12} 144 = 2$$

Ответ: 2

Тема: Показательное уравнение

Найдите корень уравнения

$$3^{x+5} = 9^{x-4}$$

$$2) \quad \frac{1}{6} = 6^{x-20}$$

3)
$$5^{3x-12} = 125$$

4)
$$\left(\frac{1}{2}\right)^{2+5x} = 128$$

$$5) \ 4^{7x-11} = \frac{1}{4}$$

6)
$$\frac{1}{7} = 7^{x-17}$$

7)
$$5^{3x-12} = 25$$

8)
$$6^{x-8} = 36^{x-18}$$

9)
$$4^{x-8} = 16^{x-18}$$

$$10)\,8^{2x+1} = 0,125$$

Пример:

Найдите корень уравнения $\left(\frac{1}{2}\right)^{2+5x} = 128$

Решение:

$$2^{-(2+5x)}=2^7$$

$$-2-5x=7$$

$$-5x=7+2$$

$$x = -\frac{9}{5} = -1.8$$

Ответ: x=- 1,8

Тема: Логарифмические уравнения

Решите уравнение

$$\log_6(5x-2)=2$$

$$\log_2(2+x) = 4$$

$$\log_5(8-x)=2$$

4)
$$\log_5(7x-1)=3$$

5)
$$\log_4(2x+1) = 2$$

6)
$$\log_5(8 - x) = 3$$

7)
$$\log_3(2 + x) = 4$$

8)
$$\log_2(6 - x) = 4$$

Пример:

Решите уравнение
$$\log_{\frac{1}{7}} (5-4x) = -2$$

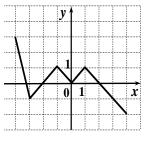
Решение:

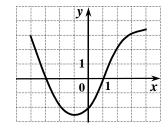
ОД3: 5-4
$$x$$
>0, x < $\frac{5}{4}$

$$5-4x=(7^{-1})^{-2}$$

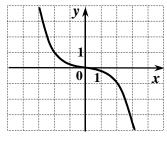
$$5-4x=49$$

$$-4x = 49 - 5$$

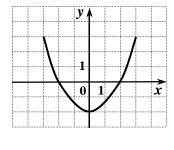

$$-4x = 44$$


Ответ: x= - 11

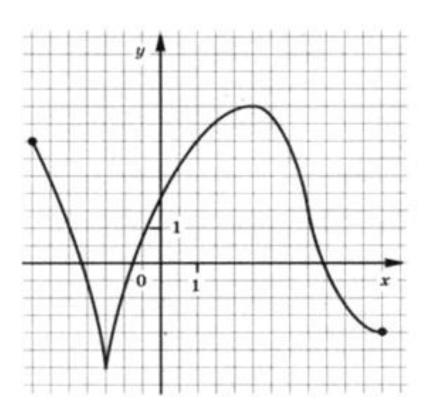
Задание 7-10


Тема: Определение свойств функции по графику

7) Определите из приведенных ниже графиков, над какой буквой расположен график нечетной и четной функции, кратко поясните свой выбор.



Б


В

Γ

Α

- 8) Используя график функции y = f(x) (см. рис. ниже), определите и запишите ответ:
- (1 балл) промежутки возрастания и убывания функции;
- 9) (1 балл) наибольшее и наименьшее значение функции;
- 10) (1 балл) при каких значениях x -3<f(x)<1.

Тема: Физический смысл производной

1) Тело движется по прямой так, что расстояние S от начальной точки изменяется по

закону $S=t+0.5t^2$ (м), где t- время движения в секундах. Найдите скорость тела через 4

с после начала движения.

2) Тело движется по закону: $S(t) = t^2 - 7t + 3$, где t - время движения в секундах. Найдите

скорость тела через 5 с после начала движения

3) Тело движется по закону $S(t)=16t-2t^3$ найдите скорость тела через 1 секунду после

начала движения.

4) Тело движется по прямой так, что расстояние S до него от некоторой точки A этой

прямой изменяется по закону S=4+3t-0,5t², где t – время движения в секундах. Через

сколько секунд после начала движения тело остановится?

5) Тело движется по закону: $S(t) = \frac{1}{3}t^3 + \frac{5}{2}t^2 - 11t + 43$. Определите, в какой момент времени

скорость будет равна 3.

6) Тело движется по закону: $S(t) = \frac{1}{3}t^3 + t^2 - 6t + 3$. Определите, в какой момент времени

скорость будет равна 2.

Пример:

Материальная точка движется прямолинейно по закону: $x(t)=6t^2-48t+17$, где x(t) расстояние от точки отсчета в метрах, t - время в секундах, измеренное с начала движения.

Найдите ее скорость (в метрах в секунду) в момент времени t=9c.

Решение:

Найдем производную функции $x(t)=6t^2-48t+17$

$$x'(t)=12t-48$$

Найдем значение производной в точке t=9c:

$$x'(9)=12 \cdot 9-48$$

$$x'(9)=60$$

Ответ: 60 м/с.

15

Тема: Область определения функции

Найдите область определения функции

1)
$$y = \sqrt{12 + 4x}$$

$$y = \log_2(3-x)$$

3)
$$y = lg \frac{2x+1}{x-1}$$

$$y = \frac{1}{4 - 7x}$$

5)
$$y = \sqrt{-5x + 2}$$

6)
$$y = \sqrt{4 + 3x}$$

7)
$$y = \sqrt{-3x + 1}$$

8)
$$y = \log_{\frac{1}{5}}(7 - 21x)$$

9)
$$y = \frac{1}{3-5x}$$

10)
$$y = \frac{2}{2x+6}$$

Пример 1:

Найти область определения функции

$$f(x) = \frac{x+2}{x^2-3}$$

Решение:

в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым:

$$x^2 - 3 \neq 0$$

$$x^2 \neq 3$$

Полученное уравнение имеет два корня: $x_1 = -\sqrt{3}, x_2 = \sqrt{3}$

Данные значения не входят в область определения функции.

Действительно, подставьте $x_1 = -\sqrt{3}$ или $x_2 = \sqrt{3}$ в функцию $f(x) = \frac{x+2}{x^2-3}$

и вы увидите, что знаменатель обращается в ноль.

Ответ: область определения $D(f)=R\setminus\{-\sqrt{3},\sqrt{3}\}$

Пример 2:

Найти область определения функции $y = \sqrt{-5x + 2}$

Решение:

подкоренное выражение должно быть неотрицательным:

$$-5x + 2 \ge 0$$
,

$$-5x \ge -2$$
,

$$x \le \frac{2}{5}$$

Omsem:
$$x \leq \frac{2}{5}$$

Задание 13

Тема: Иррациональные уравнения

Решите уравнение:

1)
$$\sqrt{3x+2} = 3$$

2)
$$\sqrt{4-8x} = 2$$

3)
$$\sqrt[3]{x+2} = 3$$

4)
$$\sqrt{6x+4} = 2$$

$$5) \ \sqrt{6-x} = 4$$

6)
$$\sqrt{2x-1} = 6$$

Пример:

Решить уравнение:

$$\sqrt{x^2 - 3} = 1$$

Решение:

Возведем обе части уравнения в квадрат.

$$x^2 - 3 = 1$$
;

Перенесем -3 из левой части уравнения в правую и выполним приведение подобных слагаемых.

$$x^2 = 4$$
;

Полученное неполное квадратное уравнение имеет два корня -2 и 2.

Проверка:

Произведем проверку полученных корней, для этого произведем подстановку значений переменной х в исходное уравнение.

$$\frac{\text{при } x_1 = -2}{\sqrt{(-2)^2 - 3}} = 1$$

$$\frac{\text{при } x_2 = -2}{\sqrt{2^2 - 3}} = 1$$

истинно истинно.

Следует, что исходное иррациональное уравнение имеет два корня -2 и 2.

Ответ: -2 и 2

Задание 14

Тема: Тригонометрические уравнения

Решите уравнение

- 1) $\sin x 1 = 0$
- 2) $2\cos x + \sqrt{2} = 0$
- 3) $2\sin x + 1 = 0$
- $\sin x + 0.5 = 0$
- 5) $2\sin x + \sqrt{3} = 0$

Пример:

$$\cos x = \frac{\sqrt{3}}{2}$$

Решение:

Это простейшее уравнение вида: cosx=a , x=± arccosa+2 π к, к \in Z

x=±
$$\arccos \frac{\sqrt{3}}{2}$$
+2πκ,κ∈Z

$$x=\pm \frac{\pi}{6} + 2\pi \kappa, \kappa \in \mathbb{Z}$$

Ответ: $x=\pm \frac{\pi}{6} + 2\pi \kappa$, $\kappa \in \mathbb{Z}$

Тема: Первообразные

Найдите все первообразные функции:

- 1) $f(x)=x^5+3x^4+5x-2$
- 2) $f(x)=5x^4+4x^3+2x^2-6$
- 3) $f(x)=7+6x^2$
- 4) $f(x)=2x+x^3+5$
- 5) $f(x)=x^3+3x^2+2x-8$

Пример:

Найдите все первообразные функции: $f(x)=2x^3-6x^2+x-1$

Решение:

$$F(x) = \frac{x^4}{2} - 2x^3 + \frac{x^2}{2} - x + C$$

Задание 16

Тема: Система уравнений

- 1) $\begin{cases} 5x 3y = 1 \\ 2x + y = 7 \end{cases}$
- 2) $\begin{cases} -3x + 2y = 5 \\ 4x y = -10 \end{cases}$
- 3) $\begin{cases} 5x + 2y = -1 \\ 3x y = -5 \end{cases}$

Пример:

$$\begin{cases} 2x + 3y = 12 \\ 3x - y = 7 \end{cases}$$

Решение:

Из второго уравнения очень просто выразить у: 3x-y=7, y=3x-7

Теперь подставим то, что получилось вместо у в первое уравнение:

$$2x+3y=12 \Leftrightarrow 2x+3(3x-7)=12$$

Мы получили уравнение с одной неизвестной, которое очень просто решить:

$$2x+3(3x-7)=12$$

$$2x+3\cdot3x-3\cdot7=12$$

$$2x+9x-21=12$$

$$11x=33$$

$$x=3$$

А теперь вернемся к выраженному у и подставим в него полученное значение х:

$$y=3x-7=3\cdot 3-7=2y=3x-7=3\cdot 3-7=2$$
.

Итак, ответ:
$$x=3$$
; $y=2$

Ответ, принято записывать как координаты, то есть в таком виде: (х; у).

Ответ в нашем примере запишется так:

Ответ: (3;2)

Задание 17

Тема: Рациональные неравенства

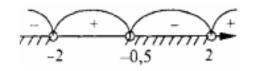
Решите неравенство

$$\frac{x^2 - 4}{2x + 1} < 0$$

2)
$$\frac{x-4x^2}{x-1} > 0$$

$$\frac{1}{x-1} > 0$$

3)
$$\frac{(x-6)(4x+7)}{9-x} \le 0$$


4)
$$\frac{x^2-25}{6x+1} < 0$$

$$5) \frac{x^2 + 2x - 3}{2x - 3} > 0$$

Пример:

$$\frac{x^2-4}{2x+1} < 0, \frac{(x-2)(x+2)}{2x+1} < 0$$

Пусть
$$f(x) = \frac{(x-2)(x+2)}{2x+1} < 0$$

f(x) определена на $\left(-\infty;-0,5\right) \cup \left(-0,5;\infty\right)$

$$x \in (-\infty; -2) \cup (-0,5; 2)$$

Ombem:
$$x \in (-\infty; -2) \cup (-0.5; 2)$$

Задание 18

Тема: Геометрия

- 1) Радиус основания цилиндра равен 4 см, площадь боковой поверхности вдвое больше площади основания. Найдите площадь полной.
- 2) Длина окружности конуса равна 12π см, а высота конуса 8 см. Найдите площадь боковой поверхности и объем конуса.
- 3) Образующая конуса равна 10 см, а высота конуса 8 см. Вычислить площадь боковой поверхности и объем конуса.
- 4) Длина окружности цилиндра 6π см, высота 8 см. Вычислите площадь боковой поверхности и объем цилиндра.
- 5) Основание пирамиды *DABC* прямоугольный треугольник с катетами 3 см и 6 см. Высота *DA* равна 8 см. Площадь боковой грани *DBC* равна 15 см². Вычислить площадь боковой и полной поверхности пирамиды.

Пример:

Радиус основания цилиндра равен 4 см, площадь боковой поверхности вдвое больше площади основания. Найти объём цилиндра.

Решение:

$$S(och) = \pi R2 = \pi *42 = 16 \pi (cm2)$$

$$S(60K)=2 \pi RH=2 \pi *4*H=8 \pi H$$

$$8 \pi H = 2*16* \pi$$

H=4 (cm)

 $V=S(och)*H=16 \pi *4=64 \pi (cm3)$

Ответ: V=64 π (см3)

Задание 19

Тема: Комбинаторика, статистика и теория вероятностей

1) В среднем из 2000 ампул, поступивших в ЛПУ, 14 брак. Найдите вероятность того,

что одна случайно выбранная для контроля ампула не брак

2) Производство выпускает одноразовые шприцы. В среднем на 120 качественных

одноразовых шприцов приходится девять шприцов со скрытыми дефектами. Найдите

вероятность того, что купленный шприц окажется качественный. Результат округлите до

сотых.

В чемпионате по гимнастике участвуют 50 спортсменок: 17 из России, 22 из США, 3)

остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием.

Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

Пример:

В коробке лежат 5 красных, 7 зеленых и 2 синих кубика. Случайным образом из коробки

берут кубик. Какова вероятность того, что из коробки взяли зеленый кубик?

Решение:

Число

вариантов

выбора

монет:

n=7+10+8=25.

Число вариантов выбора монет достоинством 5 рублей или 2 рубля: m = 7 + 8 = 15.

Искомая вероятность:

$$P = \frac{15}{25} = 0.6.$$

Ответ: 0,5.

Дополнительная часть

Задание 20

Тема: Исследование функции с помощью производной

Исследовать функцию на монотонность и экстремумы:

$$f(x) = -\frac{1}{9}x^3 + x^2$$

2)
$$f(x)=9+8x^2-x^4$$

3)
$$f(x) = x^3 - 3x + 7$$

Пример:

$$f(x) = 6 - x^4 + 8x^2$$

Решение:

$$f'(x)=16x - 4x^3$$

$$4x(4-x^2)=0$$

$$4x=0, 4-x^2=0 x=2 \text{ if } x=-2$$

Функция возрастает на $(-\infty; -2)U(0; 2)$, функция убывает на $(-2; 0)U(2; +\infty)$,

Экстремумы функции: x=0 - min, x=2 и -2-max

Ответ: функция возрастает на $(-\infty;-2)$ U(0;2), функция убывает на (-2;0) U(2;+∞), экстремумы функции: x=0 −min, x=2 и -2-max

Задание 21

Тема: Система уравнений

1)
$$\begin{cases} 27^x = 9^y \\ 81^x = 3^{y+1} \end{cases}$$

2)
$$\begin{cases} 2^{x-3y} = 16 \\ x - y = 8 \end{cases}$$

Пример:

$$\begin{cases} 3^{x} \cdot 2^{y} = \frac{1}{9} \\ y - x = 2 \end{cases} \begin{cases} 3^{x} \cdot 2^{y} = \frac{1}{9} \\ y = x + 2 \end{cases}, \begin{cases} 3^{x} \cdot 2^{x+2} = \frac{1}{9} \\ y = x + 2 \end{cases}, \begin{cases} 4 \cdot 6^{x} = \frac{1}{9} \\ y = x + 2 \end{cases},$$

$$\begin{cases} 6^{x} = 6^{-2} \\ y = x + 2 \end{cases}, \begin{cases} x = -2 \\ y = 0 \end{cases}$$

Ответ: (-2;0)

Задание 22

Тема: Логарифмические неравенства

Решите неравенство

$$\log_{\frac{1}{4}}(7-x) \le -3$$
$$\log_{\frac{1}{4}}(5x+2) \le -2.$$
$$\log_{\frac{1}{2}}(2x+1) > -2$$

Пример:

$$\log_{0,5}(2x+5) < 0.$$

Решение:

$$\begin{cases} 2x+5>0\\ 2x+5\ge 1 \end{cases} \Rightarrow \begin{cases} x>-\frac{5}{2}\\ x\ge -2 \end{cases}$$

Omsem: $x \in [-2; \infty)$

Тема: Определенный интеграл

1) Найдите площадь фигуры, ограниченной линиями $y=x^3$, $y=x^2$ и осью ординат

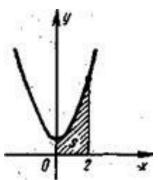
2) Найдите площадь фигуры, ограниченной линиями $y=-x^2+5x$, y=0, x=0 и x=5

3) Найдите площадь фигуры, ограниченной линиями $y=x^2$, $y=-x^2+8$.

Пример:

Вычислить площадь, ограниченную линиями $y = x^2 + 1$, y = 0, x = 0, x = 2

Решение:


Построим фигуру, площадь которой мы должны будем вычислить.

 $y = x^2 + 1$ — это парабола ветви, которой направлены вверх, и парабола смещена относительно оси Оу вверх на одну единицу

График функции $y = x^2 + 1$

$$S = \int_0^2 (x^2 + 1) dx = \left(\frac{x^3}{3} - x\right)_0^2 = \frac{8}{3} + 2 - 0 = 4\frac{2}{3}$$

Ответ: $4\frac{2}{3}$

Эталоны ответов:

Задание 1

- 1) 50
- 2) 3
- 3) 18
- 4) 5750
- 5) 276
- 6) 8
- 7) 25
- 8) 80
- 9) 12000
- 10) 12500

- 1) $\frac{5}{8}$
- 2) $-\frac{13}{24}$
- 3) 14
- 4) $1\frac{11}{18}$
- 5) 100
- 6) $\frac{11}{12}$
- 7) $-1\frac{7}{8}$
- 8) 9
- 9) 1,5
- 10) 1

- $1) \qquad \frac{2\sqrt{2}}{3}$
- 2) 0,5
- 3) $-\frac{5}{13}$
- 4) $-\frac{12}{13}$
- 5) -0,6
- $6) \qquad -\frac{\sqrt{15}}{4}$
- $7) \qquad \frac{\sqrt{10}}{4}$

Задание 4

- 1) -2
- 2) -2
- 3) 6
- 4) 3
- 5) 4
- 6) 3
- 7) 2
- /
- 8) 1
- 9) 1
- 10) 0,5

- 1) 13
- 2) 19
- 3) 5
- 4) -1,8
- 5) 1,4
- 6) 16
- 7) 4,7
- 8) 28
- 9) 28
- 10) -1

- 1) 7,6
- 2) 14
- 3) -17
- 4) 18
- 5) 7,5
- 6) -117
- 7) 79
- 8) -10

Задание 7-10

7) В - нечетная

 Γ – четная

- 8) функция возрастает на [-1,5; 2,5], функция убывает на [-3,5; -1,5]∪ [2,5; 6]
- 9) $\max f(x) = 4.5, \min f(x) = -3$
- 10) x∈(-2,5; -1,5);(-0,5; 4)

Задание 11:

- 1) 5
- 2) 3
- 3) 10
- 4) 3
- 5) 2
- 6) 2

Задание 12:

- 1) [-3;+∞)
- $(-\infty;3)$
- 3) $(-\infty; 0,5) \cup (1; +\infty)$
- 4) $(-\infty; 0,57) \cup (0,57; +\infty)$
- 5) $(-\infty; 0,4]$
- 6) $[-1,3;+\infty)$
- 7) $(-\infty; 0,3]$
- 8) $(-\infty; 0,6) \cup (0,6; +\infty)$
- 9) $(-\infty; -3) \cup (-3; +\infty)$
- 10) $R\setminus\{-3\}$

Задание 13:

1)
$$\frac{7}{3}$$

Задание 14:

$$1) x=\frac{\pi}{2}+2\pi n, n\in Z$$

2)
$$x = \pm \frac{3\pi}{2} + 2\pi n, n \in Z$$

3)
$$x=(-1)^{n+1}\frac{\pi}{6}+\pi n, n \in \mathbb{Z}$$

4)
$$x=(-1)^{n+1}\frac{\pi}{6}+\pi n, n \in \mathbb{Z}$$

5)
$$x=(-1)^{n+1}\frac{\pi}{3}+\pi n, n \in \mathbb{Z}$$

Задание 15:

1)
$$F(x) = \frac{x^6}{6} + 3\frac{x^5}{5} + 5\frac{x^2}{2} - 2x + C$$

2)
$$F(x) = x^5 + x^4 + 2\frac{x^3}{3} - 6x + C$$

3)
$$F(x)=7x+2x^3+C$$

4)
$$F(x) = x^2 + \frac{x^4}{4} + 5x + C$$

5)
$$F(x) = \frac{x^4}{4} + x^3 + x^2 - 8x + C$$

Задание 17:

- 1) $(-\infty; -2) \cup (-0.5; 2)$
- 2) $(-\infty; 0) \cup (\frac{1}{4}; 1)$
- 3) $[-1, 75; 6] \cup (9; +\infty)$
- 4) $(-\infty; -5) \cup (-\frac{1}{6}; 5)$
- 5) $(-3; 1) \cup (1,5; +\infty)$

Задание 18:

- 1) $16 \pi, 64 \pi$
- 2) 33,5
- 3) 60π , 296π
- 4) 48π , 72π
- $51 \text{ cm}^2, 60 \text{ cm}^2$

Задание 19

- 1) 0,993
- 2) 0,93
- 3) 0,22

Задание 20

1) функция убывает на $(-\infty; 0)$ \cup $(6; +\infty)$, функция возрастает на (0; 6)

$$X_{\text{max}} = 6$$
, $X_{\text{min}} = 0$

2) функция возрастает на $(-\infty; -2)$ ∪ (0; 2), функция убывает на (-2; 0) ∪ $(2; +\infty;)$

$$X_{\text{max}} = \pm 2$$
, $X_{\text{min}} = 0$

3) функция возрастает на $(-\infty; -1)$ \cup $(1; +\infty)$, функция убывает на (-1; 1)

$$X_{max} = -1, X_{min} = 1$$

- $1) \qquad \left(\frac{2}{11}; \frac{3}{11}\right)$
- 2) (10;2)

- 1) (-∞; -57]
- 2) [2,8; +∞)
- 3) $\left(-\frac{1}{2}; 1, 5\right)$

- 1) $\frac{1}{12}$
- 2) $20\frac{5}{6}$
- 3) 21,3

УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Основная литература

				Кол-во экземпляров		
№ п/п	Наименование, вид издания	Автор(-ы), составитель(- и), редактор(-ы)	издательство,	В библиотеке	На кафедре	
1	2	3	4	5	6	
	Математика : учеб. для студ. учреждений сред. проф. образования	М. И.	М.: Академия, 2015.	100		
2	Геометрия [Электронный ресурс] СПО. - Режим доступа: https://biblio-online.ru/viewer/6CFDE1DA-A86C-4739-A894-31A048614841/	Н. В. Богомолов	М. : Юрайт , 2018.	ЭБС Юрайт		

Дополнительная литература

№ п/ п	Наименование, вид издания	ель(-и), редактор (-ы)	Место издания, издатель ство, год	В библио теке	На кафе дре
1	2	3	4	5	6
1	облиция ГЭноктронний росуро] Вожни	сост. Е. П. Клоберта	КрасГМУ , 2018.	ЭБС КрасГМ У	-/-
2	Математика* [Электронный ресурс] : сборник методических указаний для обучающихся к внеаудиторной (самостоятельной) работе по специальности 34.02.01 Сестринское дело на базе основного общего образования (очная форма обучения). — Режим доступа: http://krasgmu.ru/index.php?page[common]=elib&cat=catalog&res_id=101470	П. Клоберта нц	рск :	ЭБС КрасГМ У	-/
3	Математика* [Электронный ресурс] : сборник	сост. И.	Краснояр	ЭБС	-/-

	методических указаний для обучающихся к практическим занятиям по специальности 34.02.01 Сестринское дело на базе основного общего образования (очная форма обучения) — Режим доступа: http://krasgmu.ru/index.php?page[common]=elib&cat =catalog&res_id=101469	Клоберта нц	КрасГМУ , 2018.	КрасГМ У	
4	Математика* [Электронный ресурс] : сборник методических указаний для обучающихся к внеаудиторной (самостоятельной) работе по специальности 31.02.03 Лабораторная диагностика на базе основного общего образования (очная форма обучения) — Режим доступа: http://krasgmu.ru/index.php?page[common]=elib&cat=catalog&res_id=101464	П. Клоберта нц	Краснояр ск : КрасГМУ , 2018.	ЭБС КрасГМ У	-/-
5	Математика [Электронный ресурс] : рабочая тетрадь к практическим и лабораторным занятиям по геометрии для обучающихся на базе основного общего образования	П.		ЭБС КрасГМ У	-/-
6	Математика [Электронный ресурс]: сб. тестовых заданий с эталонами ответов для студентов 1 курса, обучающихся на базе основного общего образования (очная форма обучения). Ч. І Режим доступа: https://krasgmu.ru/index.php?page[common]=elib&cat=catalog&res_id=516	П. Клоберта нц, И. П. Клоберта	КрасГМУ	ЭБС КрасГМ У	-/-
7	Математика [Электронный ресурс] : сб. метод. указаний для обучающихся к практическим и лабораторным занятиям на базе основного общего образования. Ч. 2.	Π.	Краснояр ск : КрасГМУ , 2018.		-/-
8	Математика [Электронный ресурс]: сб. тестовых заданий с эталонами ответов для студентов 1 курса, обучающихся на базе основного общего образования (очная форма обучения). Ч. ІІ Режим доступа: https://krasgmu.ru/index.php?page[common]=elib&cat=catalog&res_id=516	П. Клоберта нц, И. П. Клоберта	, 2015.	ЭБС КрасГМ У	-/-
9	Математика. Сборник задач профильной направленности: учеб. пособие для учреждений сред. проф. образования		М. : Академия , 2014.	100	-/-
1	Математика: алгебра, начала математического анализа, геометрия [Электронный ресурс] : сб. ситуац. задач с эталонами ответов для обучающихся на базе основного общего образования. Ч. І.	П. Клоберта	Краснояр ск : КрасГМУ , 2017.		-/-

	Математика: алгебра, начала математического	сост. И.	Краснояр	-/-
1	анализа, геометрия [Электронный ресурс] : сб.	Π.	ск :	
1	ситуац. задач с эталонами ответов для	Клоберта	КрасГМУ	
	обучающихся на базе основного общего	нц	, 2017.	
	образования. Ч. 2.			

Электронные ресурсы:

Электронные ресурсы: ЭБС КрасГМУ «Colibris»

ЭБС Консультант студента ВУЗ ЭБС Консультант студента Колледж

ЭБС Айбукс

ЭБС Букап

ЭБС Лань

ЭБС Юрайт

ЭБС MedLib.ru

НЭБ eLibrary

ЭМБ Консультант врача СПС КонсультантПлюс