Tasks for student's self-dependent work

Variant 1

- 1. 10 measurements of the x value were made:
- 10.5
- 10.8
- 11.2
- 10.9
- 10.4
- 10.6
- 10.9
- 11.0
- 10.3
- 10.8

The Instrument error is 0.05.

Find the random error of the direct measurement, the relative error, and the total error of this measurement.

- 2. Determine the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(10.50\pm0.05)$ kg, $V=(0.050\pm0.002)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

- 1. 10 measurements of the x value were made:
- 10.6
- 11.3
- 10.5
- 10.7
- 10.8
- 10.9
- 10.8
- 10.1
- 10.9
- 11.0

- 2. Find the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(0.110\pm0.005)$ kg, $V=(50.0\pm0.5)$ cm³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. 9 measurements of the x value were made:

12; 11; 14; 13,5; 12; 11; 15; 11; 10.

- 2. Determine the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(10.50\pm0.05)$ kg, $V=(0.05\pm0,002)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. Using a stopwatch, n = 5 measurements of 10 pendulum oscillations were performed. As a result, experimental data were obtained:

- 2. It is required to determine the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(15.20\pm0.05)$ kg, $V=(0.050\pm0.002)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. 9 measurements of the x value were made:

- 2. Find the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(10.50\pm0.05)$ kg, $V=(0.105\pm0.005)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. A number of measurements of the x value were made:

66; 65; 63; 64; 68; 61; 69; 62; 66; 65.

- 2. Calculate the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(15.05\pm0.05)$ kg, $V=(0.050\pm0.002)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. A number of measurements of the x value were made:

0.55; 0.56; 0.53; 0.50; 0.49; 0.52; 0.51; 0.58; 0.53; 0.51

- 2. Find the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(10.12\pm0.01)$ kg, $V=(0.050\pm0.002)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. A number of measurements of the x value were made:

562; 580; 577; 590; 569; 587; 591; 568; 576; 588;

- 2. Determine the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(5.50\pm0.05)$ kg, $V=(0.050\pm0.002)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. A number of measurements of the x value were made:

0.55; 0.56; 0.53; 0.50; 0.49; 0.52; 0.51;

- 2. Find the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(25.50\pm0.05)$ kg, $V=(0.050\pm0.002)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. A number of measurements of the x value were made:

0.001; 0.002; -0.004; -0.003; 0.007; -0.006; 0.004;

- 2. It is required to determine the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(12.06\pm0.01)$ kg, $V=(0.050\pm0.001)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. A number of measurements of the x value were made:

$$0.2; 0; 0.3; -0.8; 0; -0.6; 0; 0.14; -0.1; 0.7; -0.4;$$

- 2. it is required to determine the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(0.20\pm0.01)$ kg, $V=(0.054\pm0.001)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. A number of measurements of the x value were made:

0.2; 0.3; 0.1; 0.3; 0.4; 0.1; 0.2 the

- 2. Calculate the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(23.120\pm0.005)$ kg, $V=(0.030\pm0.001)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

1. A number of measurements of the x value were made:

0.21; 0.32; 0.19; 0.30; 0.25; 0.28; 0.31 the

- 2. Calculate the error of indirect measurement of material density from directly measured values of mass m and volume V of the sample, if $m=(23.120\pm0.005)$ kg, $V=(0.030\pm0.001)$ m³.
- 3. Use the photo of the caliper to determine the **accuracy** of this device and the **current reading** using the vernier scale:

Example for №3.

