Федеральное государственное бюджетное образовательное учреждение высшего образования

«Красноярский государственный медицинский университет имени профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации

Кафедра педиатрии ИПО

Зав.каф: дмн., проф. Таранушенко Т.Е.

Проверил: кмн., доц. Макарец Б.Г.

РЕФЕРАТ

На тему: «Проксимальные тубулопатии»

Выполнила: Врач-ординатор Ахмедова Э.И.

Cop of reacuse S (огд)
Cop of reacuse S (огд)
Красноярск, 2017 год

ОГЛАВЛЕНИЕ:

ОПРЕДЕЛЕНИЕ	.3
КЛАССИФИКАЦИЯ ТУБУЛОПАТИЙ	.3
ПРОКСИМАЛЬНЫЕ ТУБУЛОПАТИИ	.3
ГИПОФОСФАТЕМИЧЕСКИЙ РАХИТ (ФОСФАТ-ДИАБЕТ)	3
ПРОКСИМАЛЬНЫЙ РЕНАЛЬНЫЙ ТУБУЛЯРНЫЙ АЦИДОЗ (II ТИП)	8
СИНДРОМ ФАНКОНИ (ДЕ ТОНИ-ДЕБРЕ)1	.0
РЕНАЛЬНАЯ ГЛЮКОЗУРИЯ1	L5
ЛИТЕРАТУРА1	.8

ОПРЕДЕЛЕНИЕ
ош еделение
Тубулопатии – канальцевые болезни почек, характеризуемые различными
нарушениями тубулярного транспорта электролитов, минералов, воды и органических субстанций, наследственного (первичные тубулопатии) или приобретенного характера (вторичные тубулопатии).
КЛАССИФИКАЦИЯ

Классификация тубулопатий основана на локализации транспортного дефекта определенного отдела нефрона.

Проксимальные тубулопатии						
□ Гипофосфатемический рахит (фосфат-диабет)						
□ Проксимальный ренальный тубулярный ацидоз (II тип)						
□ Синдром Фанкони (Де Тони-Дебре)						
□ Ренальная глюкозурия						
□ Болезнь Дента						
Петлевые тубулопатии						
□ Синдром Барттера						
Дистальные тубулопатии						
□ Синдром Гительмана						
□ Дистальный ренальный тубулярный ацидоз (І тип)						
□ Псевдогипоальдостеронизм						
□ Нефрогенный несахарный диабет						

□ Синдром Лиддла

Несмотря на разнообразие тубулопатий, основу их диагностики составляет раннее выявление таких клинических симптомов, как артериальная гипертензия/гипотензия, полидипсия, полиурия, рахитоподобные изменения, с последующим исследованием и определением нарушений кислотно-щелочного состояния (метаболический ацидоз/алкалоз), натрий-калиевого и кальцийфосфорного гомеостаза.

ГИПОФОСФАТЕМИЧЕСКИЙ РАХИТ (ФОСФАТ-ДИАБЕТ)

Гипофосфатемический рахит (фосфат-диабет) — заболевание, связанное с дефектом

реабсорбции фосфатов в проксимальных канальцах, проявляющееся у детей фосфатурией, гипофосфатемией и выраженными рахитическими изменениями, резистентными к обычным дозам витамина D.

Эпидемиология

X-сцепленный доминантный гипофосфатемический рахит является наиболее частой наследуемой формой рахита с частотой встречаемости 1:20000 - 1:50000 живых новорожденных. Другие наследственные формы гипофосфатемического рахита с аутосомно-доминантным или аутосомно-рецессивным типом наследования встречаются гораздо реже.

Этиопатогенез

Описано несколько наследственных форм болезни, протекающих с изолированным нарушением проксимальной реабсорбции фосфатов в почках:

- гипофосфатемический рахит, X-сцепленный доминантный (OMIM 307800);
- гипофосфатемический рахит, аутосомно-доминантный (ОМІМ 193100);
- гипофосфатемический рахит, аутосомно-рецессивный (ОМІМ 241520; ОМІМ 613312);
- наследственный гипофосфатемический рахит с гиперкальциурией (OMIM 241530).

В норме транспорт фосфатов через люминальную мембрану проксимального канальца

осуществляется натрий-фосфатными котранспортерами (sodium-phosphate transporter 2a, 2c - NPT2a, NPT2c), экспрессия которых модифицируется фактором роста фибробластов-23 (fibroblast growth factor 23 – FGF23) и паратгормоном.

FGF23 способствует развитию фосфатурии посредством угнетения реабсорбции фосфатов, вследствие редукции NPT2a, NPT2c и подавления экспрессии 1- α -гидроксилазы с последующей супрессией циркулирующего $1,25(OH)_2D$.

Паратгормон так же ингибирует реабсорбцию фосфатов в проксимальных канальцах, инактивируя натрий-фосфатные котранспортеры, но в отличие от FGF23 одновременно индуцирует транскрипцию 1-α-гидроксилазы, стимулируя синтез 1,25(OH)₂D в проксимальных канальцах, что ведет к повышению NPT2b-зависимой кишечной абсорбции фосфатов и подавлению транскрипции генов паратгормона.

Мутации в фосфат-регулирующем гене гомологичном эндопептидазе в локусе Xp22.1

(PHEX-phosphate-regulating endopeptidase homolog, X-linked), приводят к нарушению ферментных систем, осуществляющих протеолиз FGF23, при **X-сцепленном доминантном гипофосфатемическом рахите**. Избыток FGF23 обуславливает нарушение реабсорбции фосфатов в проксимальных канальцах почек, что формирует характерный биохимический фенотип, проявляющийся фосфатурией, гипофосфатемией, низким или нормальным, но неадекватно сниженным относительно гипофосфатемии уровнем $1,25(OH)_2D_3$. Несмотря на то, что к настоящему времени описано более 170 мутаций PHEX-гена (миссенс, нонсенс, делеции, сплайс-сайт мутации), отчетливые генотип-фенотипические корреляции не описываются.

Причиной **аутосомно-доминантного гипофосфатемического рахита** является непосредственное возникновение мутаций в гене *FGF23* на хромосоме 12р13.3, формирующих устойчивость фактора к протеолитическому расщеплению.

Возникновению аутосомно-рецессивного гипофосфатемического рахита

способствуют мутации в гене дентин матриксного протеина 1 (dentin matrix protein 1-DMP1) на хромосоме 4q21 или гене эктонуклеоид пирофосфатазы/фосфодиэстеразы 1

(endonucleotide pyrophosphatase/phosphodiesterase 1 - ENPP1) на хромосоме 6q22-q23, так же способствующие повышению концентраций FGF23.

Аутосомно-рецессивный наследственный гипофосфатемический рахит с гиперкальциурией развивается вследствие мутаций в гене *SLC4A3* на хромосоме 9q34, непосредственно кодирующем натрий-фосфатный котранспортер (NPT2c) люминальной мембраны проксимальных канальцев.

Клиническая картина

Заболевание манифестирует в возрасте 9-13 месяцев. Характерны:

- Отставание в росте
- Деформации нижних конечностей (чаще варусные), прогрессирующие, несмотря на проведение профилактики рахита обычными дозами витамина D.

Диагностика

Ведущими лабораторными симптомами FGF23-зависимых форм гипофосфатемического рахита (X-сцепленный доминантный $\Gamma\Phi P$, аутосомнодоминантный

 $\Gamma\Phi P$, аутосомно-рецессивный $\Gamma\Phi P$) являются: гипофосфатемия (менее 0,8 ммоль/л), фосфатурия (**3B**). Кальций сыворотки и 25(OH)D₃ в норме, уровень 1,25(OH)₂D₃ низкий или нормальный, уровень паратгормона нормальный или незначительно повышен (**3B**). Отсутствует метаболический ацидоз. Повышена активность щелочной фосфатазы. Почечные функции остаются сохранными.

Дифференциальная диагностика

FGF23-зависимые формы ГФР необходимо дифференцировать с обычным витамин-D-дефицитным рахитом, дистальным ренальным тубулярным ацидозом, синдромом Фанкони (де Тони-Дебре).

Наследственный ГФР с гиперкальциурией отличается от X-сцепленного доминантного ГФР повышенными уровнями $1,25(OH)_2D_3$, $25(OH)D_3$, низким уровнем паратгормона и высокой абсорбцией кальция в кишечнике.

Для большинства форм ГФР существует генетическое подтверждение.

Визуализационная диагностика

Проводится с целью определения выраженности рахитических изменений скелета:

- 1. Рентгенография кистей, определение костного возраста
- 2. Денситометрия
- 3. Рентгенография трубчатых костей голеней с захватом коленных суставов. Ультразвуковое исследование почек у нелеченых детей всегда в норме, но в ходе

лечения 1,25- дигидрокси-витамином D3 необходим динамический контроль УЗИ почек в связи с возможностью развития нефрокальциноза.

Показания к консультации специалистов

При поздно начатом лечении часто возникает необходимость в ортопедической хирургии для устранения деформаций нижних конечностей.

Консультация генетика, с целью объяснения закономерностей наследования и прогнозирования рисков повторения болезни при последующих беременностях.

При отставании в росте, при возможности, консультация диетолога.

Скрининг

применяют следующие методы					
скрининга. Анализ родословной:					
- поиск случаев подтвержденного заболевания у членов семьи и					
родственников.					
□ Выявление основных симптомов:					
- задержка роста -					
рахитоподобные изменения					
скелета.					
ORESTOTA.					

Лабораторные данные:

- КЩС (рН крови, стандартный бикарбонат НСО₃-, ВЕ)
- биохимическое исследование суточной мочи: определение фосфатов определение соотношений фосфаты/креатинин в разовой (второй утренней) порции

мочи

- исследование крови: фосфор, кальций, креатинин, паратгормон, щелочная фосфатаза
- УЗИ почек, мочевого пузыря

Лечение

Стандартная терапия FGF23-медиируемых гипофосфатемических рахитов (X-ГФР, аутосомно-доминантный ГФР, аутосомно-рецессивный ГФР) основана на одновременном назначении неорганических фосфатов и активных аналогов витамина D (чаще кальцитриол; так же используется альфакальцидол) и направлена на клиническое излечение рахита, улучшение гистологии костной ткани. Раннее начало лечения позволяет избежать деформации костей.

Дозы и длительность лечения определяются выраженностью рахитических изменений, уровнем фосфатов в крови, возрастом пациентов. Более высокие дозы препаратов необходимы в начале терапии и в периоды интенсивного роста ребенка.

Фосфат

Оптимальные дозы фосфатов не определены. Обычно рекомендуется пероральный прием фосфата в дозе 30-40 мг/кг в день по элементарному фосфору в 4-5 приемов (**3C**). Возможно повышение дозы фосфатов в периоды интенсивного роста (до 55-70 мг/кг в день по элементарному фосфору). Цель – достижение уровня фосфатов сыворотки 1,0-1,2 ммоль/л. В настоящее время применяется раствор неорганических фосфатов¹ (однозамещенный фосфат натрия 2-водный – 5 г и двухзамещенный фосфат натрия 12-водный – 10 г на 250 мл воды), конечный раствор содержит 7,44 мг элементарного фосфора в

1 мл.

В большинстве случаев не удается полностью нормализовать уровень фосфатов в

сыворотке.

1,25- дигидрокси-витамин D_3

Ежедневная доза 0,02-0,05 мкг/кг/сут (20-50 нг/кг/сут) в 2-3 приема (**3C**). Оптимальные дозы не определены. С целью предотвращения формирования нефрокальциноза необходим динамический контроль экскреции кальция с мочой, содержания кальция, фосфора, активности щелочной фосфатазы в сыворотке крови, УЗИ почек. В качестве альтернативы кальцитриолу может быть использован альфакальцидол.

Роль лечения рекомбинантным гормоном роста оценивается противоречиво.

Существует единственное рандомизированное исследование Zivicniak M. et al, которое показало значительное улучшение динамики роста у 8 из 16 детей, получавших рекомбинантный гормон роста (**1b,B**).

В ряде случаев, при формировании необратимых изменений костей, оказывается необходимой хирургическая коррекция, которая должна проводиться после закрытия эпифизарных зон роста.

Ведение пациентов и реабилитационные мероприятия

- 1. В начале терапии, в течение четырех недель, рекомендуется еженедельный (1 раз в неделю) контроль лабораторных показателей, уровней кальция, фосфора, щелочной фосфатазы, паратгормона в крови, экскреции кальция, фосфатов с мочой; позднее амбулаторный контроль роста, лабораторных данных для оптимальной адаптации терапии должен проводиться не менее четырех раз в год
- 2. Необходимость радиологического контроля рахита определяется клиническими и биохимическими контрольными показателями
- 3. УЗИ почек должно проводиться не менее 1 раза в год для исключения нефрокальциноза.

Прогноз

Терапия фосфатом и $1,25(OH)_2D_3$ способствует излечению рахита, структура костной ткани полностью не восстанавливается.

ПРОКСИМАЛЬНЫЙ РЕНАЛЬНЫЙ ТУБУЛЯРНЫЙ АЦИДОЗ (ІІ ТИП)

Проксимальный ренальный тубулярный ацидоз (II тип) (ОМІМ 179830) –

заболевание, характеризующееся нарушением реабсорбции бикарбонатов (HCO_3^-) в проксимальных канальцах.

Эпидемиология

Изолированный проксимальный ренальный тубулярный ацидоз (РТА) встречается крайне редко. Данные о распространенности заболевания отсутствуют.

Этиопатогенез

Первичный проксимальный РТА (изолированный)

- Аутосомно-доминантный;
- □ Аутосомно-рецессивный с патологией глаз и отставанием в умственном

развитии, мутация гена SLC4A4 (хромосома 4q21), нарушение структуры натрий-бикарбонатного котранспортера-1 (Na⁺-CO₃-cotransporter - NBC-1) базолатеральной мембраны проксимального канальца (OMIM 604278);

□ Спорадический

- транзиторный (детский), незрелость натрий-водородного антипортера-3 (Na⁺-H⁺ exchanger NHE-3) апикальной мембраны проксимального канальца;
 - персистирующий (взрослый).

Вторичный проксимальный РТА обусловлен рядом заболеваний: цистиноз, галактоземия, гликогеноз (тип I), тирозинемия, болезнь Вильсона, гиперпаратиреоидизм, медуллярная кистозная болезнь, витамин-Д-дефицитный и зависимый рахит, идиопатическая гиперкальциурия, первичная гипероксалурия, синдром Лоу, синдром Шегрена, множественная миелома. Также может быть вызван токсическим поражением проксимальных канальцев солями тяжелых металлов, некоторыми лекарственными препаратами.

В норме в проксимальных канальцах реабсорбируется до 90% профильтрованных бикарбонатов. Вследствие нарушения реабсорбции бикарбонатов в проксимальном канальце, бикарбонатурия развивается при нормальной концентрации бикарбонатов в плазме крови. Это ведёт к метаболическому ацидозу при отсутствии подкисления мочи, несмотря на

сохранные механизмы дистальной секреции ионов H⁺. Как только концентрация плазменных бикарбонатов снижается ниже порогового значения (в большинстве случаев менее 15 ммоль/л, в отсутствии лечения), профильтрованные бикарбонаты начинают полностью реабсорбироваться, реакция мочи становится кислой.

Клиническая картина

Наиболее часто заболевание диагностируется в возрасте 1 – 18 месяцев

- <u>аутосомно-доминантный тип</u> отставание в росте;
- <u>аутосомно-рецессивный тип</u> отставание в росте, глазные аномалии (глаукома, катаракта), отставание в умственном развитии;
- <u>транзиторный младенческий тип</u> задержка роста, снижение аппетита, тошнота, рвота, эпизоды дегидратации и гипотонии.

Диагностика

Диагностические критерии РТА (3С):

- Метаболический ацидоз;
- рН мочи < 5,5 (в условиях декомпенсированного ацидоза);
- Экскреция аммония в норме;
- Экскреция цитрата в норме;
- Фракционная экскреция бикарбоната более 15-20% (при HCO_3 в плазме > 20 ммоль/л).

Дифференциальная диагностика

- Синдром Фанкони (де Тони-Дебре);
- Дистальный ренальный тубулярный ацидоз (I тип).

Визуализационная диагностика

При первичном проксимальном ренальном тубулярном ацидозе УЗИ почек всегда в

норме.

Консультации специалистов

По показаниям: офтальмолог, невролог, диетолог, генетик.

Скрининг

- КЩС (рH крови, HCO₃-, BE);
- рН свежевыпущенной мочи;
- биохимическое исследование суточной мочи: глюкоза, фосфаты, кальций, белок;
- определение соотношений фосфаты/креатинин, кальций/креатинин в разовой (второй утренней) порции мочи;
- биохимическое исследование крови: калий, натрий, хлориды, кальций, фосфор, креатинин, глюкоза;
 - УЗИ почек, мочевого пузыря.

Лечение

• Бикарбонат натрия (раствор 4%: в 1 мл - 0,5 ммоль) или цитратная смесь (калия-натрия гидрогенцитрат - 1 таб/1 мерная ложка гранулированного порошка - 1,197 г лимонной кислоты, 0,967 калия гидрокарбоната, 0,835 г натрия цитрата, что соответствует 10,138 ммоль цитрата) 10-15 ммоль/кг/сут (в три-четыре приема) (3C).

Лечение носит заместительный характер с целью восполнения больших потерь бикарбонатов, проводится ежедневно и непрерывно, цель - поддержание стандартного бикарбоната сыворотки на уровне 21-24 ммоль/л.

Ведение пациентов и реабилитационные мероприятия

Контроль КЩС, электролитов крови (калий, натрий, хлориды) - 1 раз в 3 месяца (после подбора оптимальной дозы бикарбоната натрия)

Прогноз

Длительная подщелачивающая терапия эффективна, а при транзиторном младенческом типе вызывает быстрое увеличение роста и с возрастом может быть прервана без опасности рецидива синдрома.

СИНДРОМ ФАНКОНИ (де ТОНИ-ДЕБРЕ)

Синдром Фанкони (де Тони-Дебре) – заболевание, обусловленное генерализованной

дисфункцией проксимальных канальцев, приводящей к нарушению реабсорбции аминокислот, глюкозы, калия, натрия, воды, фосфатов, бикарбонатов, мочевой кислоты.

Эпидемиология

Первичный генетически-детерминированный синдром Фанкони (ОМІМ 134600, ОМІМ 615605, ОМІМ 613388) встречается крайне редко. Данные о распространенности заболевания отсутствуют

Этиопатогенез

Различают две формы заболевания:

- <u>первичный</u> идиопатический синдром Фанкони, в большинстве случаев носящий спорадический характер; единичные случаи могут являться наследственными (аутосомно-рецессивное, аутосомно-доминантное наследование);
- <u>вторичный</u> синдром Фанкони, обусловленный генетическими болезнями (цистиноз, галактоземия, наследственная непереносимость фруктозы,

тирозинемия (тип I), гликогеноз (тип I), болезнь Вильсона-Коновалова, митохондриальные цитопатии, болезнь Дента, синдром Лоу), токсическим действием лекарств (гентамицин, тетрациклин, антиретровирусные препараты), солей тяжелых металлов, либо развивающийся вследствие первичного амилоидоза, множественной миеломы и некоторых других заболеваний.

Наиболее частой причиной синдрома Фанкони у детей является цистиноз (ОМІМ 219800), редкое аутосомно-рецессивное заболевание, которое характеризуется накоплением кристаллов цистина внутри лизосом и сопровождается прогрессирующим поражением интерстициальной ткани почек с исходом в хроническую почечную недостаточность; частота встречаемости ~1:200000 новорожденных (Европа, США).

Дефект лизосомального переносчика цистина — цистинозина вызывается различными мутациями в гене *CTNS* (хромосома 17р13). Наиболее часто выявляемая большая делеция гена *CTNS* полностью нарушает его функцию.

Нарушение транспорта цистина через лизосомальную мембрану ведет к накоплению цистина в лизосоме, снижению цистина и цистеина в цитозоле, что приводит к повышению продукции реактивных радикалов кислорода, вызывает истощение АТФ и стимулирует апоптоз.

Клиническая Картина

Инфантильная форма нефропатического цистиноза манифестирует с синдрома Фанкони в возрасте 6-12 месяцев с быстрой прогрессией до терминальной стадии хронической почечной недостаточности (к 8-12 годам).

Ювенильную форму нефропатического цистиноза отличают более поздний дебют в течение пубертатного периода, меньшая выраженность клиники синдрома Фанкони, медленная прогрессия до хронической почечной недостаточности. Взрослая форма болезни протекает с изолированным поражением глаз.

Симптомы синдрома Фанкони: полиурия, дегидратация, мышечная слабость, отсутствие аппетита, плохая прибавка в весе, задержка роста, рахитоподобные изменения скелета, отставание в умственном развитии.

Ранними и патогномоничными экстраренальными проявлениями нефропатического цистиноза считаются отложения кристаллов цистина в роговице (кератопатия), выявляющиеся со второго года жизни, в дальнейшем могут поражаться эндокринные органы (гипотиреоз, сахарный диабет, гипогонадизм (у мальчиков)), нервная система (нейромиопатия, эпилепсия, мозжечковые и пирамидные расстройства, отставание в умственном развитии), печень и поджелудочная железа.

Диагностика

Критерии диагностики синдрома Фанкони (3С):

- Метаболический ацидоз (проксимальный РТА со снижением уровня стандартных бикарбонатов ниже 18 ммоль/л);
 - Генерализованная аминоацидурия;
 - Протеинурия (небольшая или умеренная);
 - Глюкозурия;
 - Фосфатурия;
 - Гипофосфатемия;
 - Гипокалиемия, гипонатриемия;
 - Гипоурикемия;
 - Полиурия;
 - Рахит.

Критерии диагностики нефропатического цистиноза, как причины синдрома Фанкони (3C):

- Обнаружение кристаллов цистина в роговице при помощи щелевой лампы;
- Измерение содержания цистина в лейкоцитах;
- Анализ на наличие мутаций в гене *CTNS*.

Дифференциальная диагностика

Сочетанное повреждение многих парциальных функций проксимальных канальцев отличает синдром Фанкони (де Тони-Дебре) от других тубулопатий (проксимального и дистального РТА, ренального гипофосфатемического рахита).

Визуализационная диагностика

Визуализационные исследования не играют важной роли в постановке собственно диагноза синдрома Фанкони (де Тони-Дебре).

Показания к консультации специалистов

С целью исключения нефропатического цистиноза, болезни Вильсона, как причин синдрома Фанкони (де Тони-Дебре), показано офтальмологическое обследование с применением щелевой лампы (обнаружение отложений кристаллов цистина в роговице, колец Кайзера-Флейшера). Так же оправдана консультация офтальмолога при подозрении на галактоземию, синдром Лоу (врожденная катаракта).

У пациентов с цистинозом при появлении признаков эндокринологической патологии показана консультация эндокринолога, в конечной стадии болезни — консультация трансплантолога.

Консультация генетика, с целью объяснения закономерностей наследования и прогнозирования рисков повторения болезни.

Скрининг

	КЩС (рН крови, HCO_3 -, BE);
	рН свежевыпущенной мочи;
аммони	биохимическое исследование суточной мочи: титруемые кислоты, й, кальций, фосфаты, глюкоза, белок, аминокислоты, калий;
□ разовой	определение соотношений кальций/креатинин, фосфаты/креатинин в порции мочи (вторая утренняя порция);
фосфор	биохимическое исследование крови: калий, натрий, хлориды, кальций, креатинин, глюкоза;
	УЗИ почек, мочевого пузыря.

Лечение

При синдроме Фанкони основные лечебные мероприятия направлены на коррекцию канальцевых потерь жидкости и электролитов:

- *адекватная регидратация* прием воды должен соответствовать диурезу и корригируется при возрастании экстраренальных потерь жидкости
 - *коррекция метаболического ацидоза, гипонатриемии* бикарбонат натрия (раствор

4%:

1 мл - 0,5 ммоль) 10-15 ммоль/кг/сут (в три-четыре приема) (**3C**), цель - поддержание стандартного бикарбоната сыворотки на уровне 21-24 ммоль/л

- *коррекция гипокалиемии* — препараты калия 4-10 ммоль/кг/сут (в тричетыре приема)

(3C)

- коррекция гипофосфатемии - оптимальные дозы фосфатов не определены, обычно рекомендуется пероральный прием фосфата в дозе 30-40 мг/кг в день по элементарному фосфору в 4-5 приемов (3C). Возможно повышение дозы фосфатов в периоды интенсивного роста (до 55-70 мг/кг в день по элементарному фосфору). Цель – достижение уровня

фосфатов сыворотки 1,0-1,2 ммоль/л. В настоящее время применяется раствор неорганических фосфатов² (однозамещенный фосфат натрия 2-водный – 5 г и двухзамещенный фосфат натрия 12-водный – 10 г на 250 мл воды), конечный раствор содержит 7,44 мг элементарного фосфора в 1 мл.

- назначение $1,25(OH)_2D_3$ - 0,02-0,05 мкг/кг/сут (20-50 нг/кг/сут) в несколько приемов (**3C**), с целью профилактики нефрокальциноза - динамический контроль экскреции кальция с мочой, содержания кальция, фосфора, активности щелочной фосфатазы в сыворотке крови, УЗИ почек. В качестве альтернативы кальцитриолу может быть использован альфакальцидол.

При недостаточной эффективности вышеперечисленных лечебных мероприятий по предотвращению потерь воды, калия, натрия - индометацин 0,5-1,5 мг/кг/сут (в два приема), обычно применяется до 2-летнего возраста.

Специфическая терапия нефропатического цистиноза проводится препаратом,

содержащим цистеамина битартрат (Cystagon) (3C).

Лечение начинается с низкой дозы $0.2 \text{ г/м}^2/\text{сут}$, при хорошей переносимости следует постепенно увеличивать дозу в течение 4-6 недель до целевой 1.30 г/m^2 (для пациентов до 12 лет) и 2 г/сут (для пациентов старше 12 лет, препарат необходимо принимать каждые 6 часов (**3C**). Максимальная доза не должна превышать $1.95 \text{ г/m}^2/\text{сут}$.

Эффективность действия цистеамина контролируют по определению концентраций цистина в лейкоцитах (не более 0,5 нмоль цистина на миллиграмм белка) (1B).

Раннее назначение цистеамина способствует замедлению почечных функций, предотвращает экстраренальные поражения органов и улучшает рост (3C). Для растворения кристаллов цистина в роговице применяют капли, содержащие цистеамин (0,5% - не менее 4 раз/сут) (не зарегистрированы на территории Российской Федерации). С целью восполнения потерь карнитина применяется L-карнитин в дозе 50 мг/кг/сут (в четыре приема).

Коррекция белково-энергетической недостаточности часто требует дополнительного энтерального питания через назогастральный зонд или гастростому, которые также могут быть использованы для введения лекарственных препаратов, в случае отказа ребенка.

Ведение пациентов и реабилитационные мероприятия

- 1. Контроль КЩС, сывороточных уровней креатинина, калия, натрия, хлоридов, кальция, фосфора 1 раз в 3 месяца (после подбора оптимальных доз бикарбоната натрия, препарата калия, фосфата, кальцитриола или альфакальцидола)
- 2. Радиологический контроль рахита определяется клиническими и биохимическими контрольными показателями
- 3. УЗИ почек должно проводиться не менее 1 раз в год для исключения нефрокальциноза.

Прогноз

Прогноз зависит от причины, обусловившей синдром Фанкони (де Тони-Дебре), тяжести почечных и экстраренальных проявлений.

Идиопатический синдром Фанкони (де Тони-Дебре) может приводить к хронической почечной недостаточности в подростковом или в зрелом возрасте.

Нефропатический цистиноз ведет к хронической почечной недостаточности, нарушениям зрения, гипотиреозу, прогрессирующим неврологическим расстройствам, миопатии. Раннее назначение специфической терапии цистиноза позволяет отсрочить наступление хронической почечной недостаточности и улучшить физическое развитие.

РЕНАЛЬНАЯ ГЛЮКОЗУРИЯ

Ренальная глюкозурия — заболевание, обусловленное нарушением транспорта глюкозы в проксимальных канальцах почек, при нормальном уровне глюкозы в крови.

Эпидемиология

Показатели распространенности варьируют от 0,6% до 6,3%, в зависимости от диагностических критериев, используемых для постановки диагноза семейной ренальной глюкозурии.

Этиопатогенез

мутация гена SLC5A2 натрий-глюкозного котранспортера-2 (SGLT2),						
хромосома 16р11.2;						
□ Аутосомно-рецессивное наследование (тип В) (ОМІМ 606824) -						
мутация гена SLC5A1 натрий-глюкозного котранспортера-1 (SGLT1),						
хромосома 22q12.3.						

В физиологических условиях глюкоза полностью реабсорбируется в проксимальных канальцах. Реабсорбция основной массы глюкозы происходит в S_1 и S_2 сегментах при

участии почечно-специфичного натрий-глюкозного транспортера-2 люминальной мембраны. Оставшаяся часть глюкозы удаляется из фильтрата в S_3 сегменте посредством натрий-глюкозного транспортера-1. Этот транспортер так же присутствует и в тонкой кишке. Как и другие мембранные транспортные системы, транспортеры глюкозы имеют предел насыщаемости. При снижении почечного порога для глюкозы, несмотря на нормальный уровень сахара в крови, появляется ренальная глюкозурия.

Клиническая картина

Мутации в гене, кодирующем натрий-глюкозный транспортер-2, приводят к изолированной ренальной глюкозурии (тип A) (ОМІМ 233100), потери глюкозы с мочой варьируют от 2 г/сут до 30 г/сут.

Мутации в гене, кодирующем натрий-глюкозный транспортер-1, способствуют развитию синдрома глюкозо-галактозной мальабсорбции (ОМІМ 606824). Заболевание характеризуется расстройством кишечного транспорта глюкозы и галактозы в ассоциации с глюкозурией, нефрокальцинозом/нефролитиазом. Основным клиническим симптомом является водянистая диарея, сопровождающаяся отсутствием прибавки в весе, признаками обезвоживания.

Диагностика Диагностические критерии ренальной глюкозурии (3С)

- Уровень глюкозы в крови в норме;
- Экскреция глюкозы с мочой повышена (глюкозурия).

Дифференциальная диагностика

- Сахарный диабет; Синдром Фанкони (де Тони-Дебре);
- Меллитурии (галактозурия, фруктозурия, лактозурия, пентозурия).

Визуализационная диагностика

Визуализационные исследования не требуются при изолированной ренальной

глюкозурии (тип A). Постановка диагноза глюкозо-галактозной мальабсорбции (тип B) требует проведения УЗИ почек, с целью выявления нефрокальциноза (3C)

Консультации специалистов

При изолированной ренальной глюкозурии (тип A) консультации специалистов, как правило, не требуются. По показаниям – консультация генетика, диетолога, эндокринолога.

Скрининг

	общий анализ мочи (глюкоза) КЩС (pH крови, HCO_3 -, BE)
хлорі	биохимическое исследование крови: глюкоза, калий, натрий, иды, креатинин
	УЗИ почек, мочевого пузыря.

Лечение

• <u>Изолированная ренальная глюкозурия</u> (тип A) - нет необходимости в специальном лечении. В случае выраженной глюкозурии и возникновении преходящей гипогликемии

необходима богатая углеводами диета для восполнения потерь сахара

с мочой (3С);

• <u>При глюкозо-галактозном синдроме мальабсорбции</u> (тип В) по жизненным показаниям применяется диета, полностью исключающая смеси, овощи, фрукты, молочные и другие продукты, содержащие глюкозу и галактозу.

Ведение пациентов и реабилитационные мероприятия

Наблюдение пациентов с изолированной ренальной глюкозурией не требуется.

Прогноз

Прогноз благоприятен в случае изолированной ренальной глюкозурии.

ЛИТЕРАТУРА

- 1. Детская нефрология: практическое руководство под ред. Э. Лоймана, А. Н. Цыгина, А. А. Саркисяна. М.: Литтерра, 2013, 400 с.
- 2. Федеральные клинические рекомендации минздрава России Академик РАН А.А. Баранов , 2015.
- 3. Carpenter T.O., Olear E.A., Zhang J.H. et al. Effect of paricalcitol on circulating parathyroid hormone in X-linked hypophosphatemia: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 2014; 99(9): 3103-3111
- 4. Emma F., Nesterova G., Langman C. et al. Nephropathic cystinosis: an international consensus document. Nephrol. Dial. Transplant. 2014; 29 Suppl. 4: 87-94.