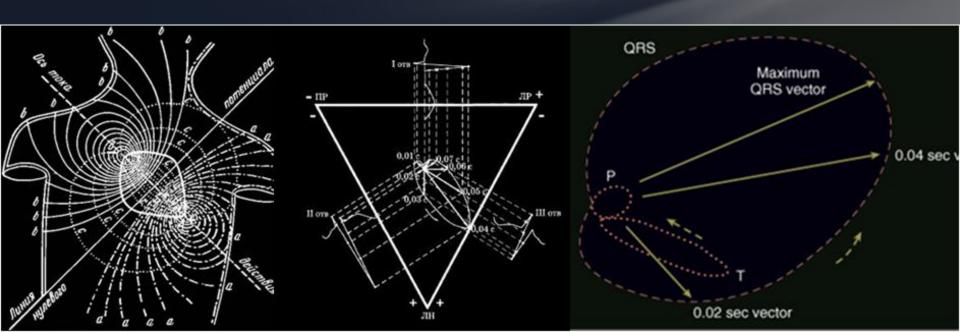


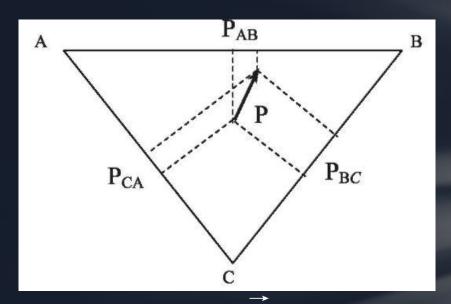
Кафедра медицинской и биологической физики

Электрография

Лекция №5 для студентов 1 курса специальности стоматология

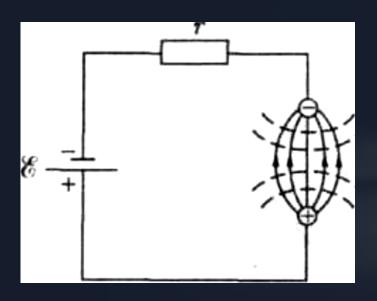

Цель: Изучение основ электрографии

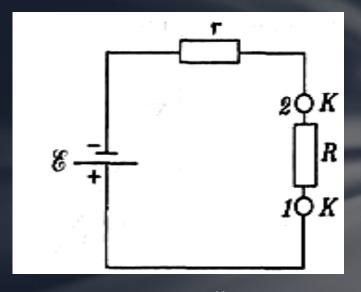
План:


- 1. Теория Эйнтховена
- 2. Реография

Теория Эйнтховена

Согласно теории Вильяма Эйнтховена (1913), сердце есть токовый диполь, который, поворачиваясь, изменяет свое положение во время сердечного цикла, и описывает сложную пространственную кривую, которую приближенно можно считать лежащей в плоскости грудной клетки. Эта кривая имеет три характерные петли, обозначаемые Р, QRS и Т.


Диполь в равностороннем треугольнике



Если начало вектора *р* поместить в центр равностороннего треугольника, то оказывается что разность потенциалов между двумя любыми вершинами треугольника прямо пропорциональна проекции дипольного момента на соответствующую сторону

$$U_{AB}: U_{BC}: U_{CA} = P_{AB}: P_{BC}: P_{CA}$$

Токовый диполь

R — эквивалентное сопротивление проводящей среды, r — внутреннее сопротивление источника, ε— ЭДС источника, электроды: 1 — исток тока, 2 — сток тока

$$arepsilon = rac{I}{R+r}$$

Токовый диполь

Токовый диполь – двухполюсная система в проводящей среде, токовый диполь есть электрический генератор.

Характеристика токового диполя – дипольный момент:

$$\vec{p}_T = I \cdot \vec{L}$$

I – сила тока,

L – расстояние между положительным и отрицательным полюсами источника тока – плечо диполя.

Потенциал, создаваемый токовым диполем в некоторой точке:

$$\phi_T = \frac{p_T \cos \alpha}{4\pi \gamma r^2}$$

где
$$\gamma = \frac{1}{\rho}$$
 – удельная электропроводность среды

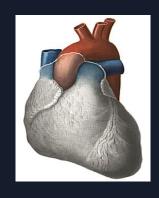
Физические основы электрографии

Регистрация биопотенциалов тканей и органов называется электрографией.

Виды электрографии:

- электрокардиография регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении;
- электроэнцефалография регистрация биоэлектрической активности головного мозга;
- **электромиография** регистрация биоэлектрической активности мышц;
- электроретинография регистрация биопотенциалов сетчатки глаза, возникающей в результате воздействия на глаз.

Значения биопотенциалов

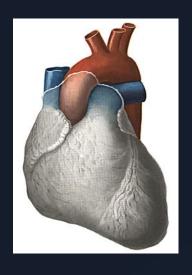

	Амплитуда, мкВ		
Биопотенциалы	максимальная	минимальная	
ЭКГ	1500-2000	100-300	
ЭМГ	1000-1500	30-40	
ЭЭГ	200-300	5-10	

Зависимость биопотенциала от времени называется <u>электрограммой</u>.

При изучении электрограмм возникают следующие задачи:

Прямая — выяснение механизма возникновения электрограммы и расчет потенциала в области измерения по заданным характеристикам электрической модели органа.

Обратная (диагностическая) — выявление состояния органа по характеру его электрограммы.

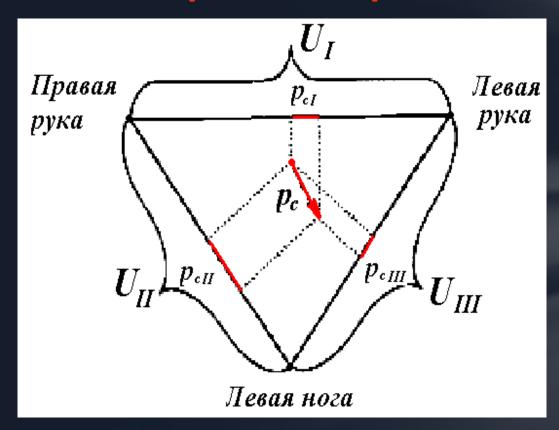


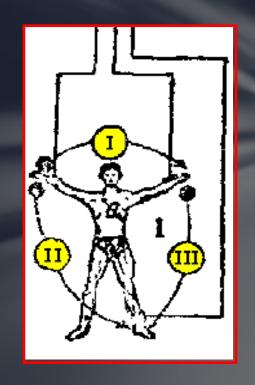
Теория отведений Эйнтховена.

Сердце – мощная мышца. При синхронном возбуждении всех волокон сердечной мышцы в среде, окружающей сердце, течет ток, который даже на поверхности тела создает потенциал порядка нескольких мВ.

Сердце есть токовый диполь с дипольным моментом P_c , который поворачивается, изменяя свое положение и точку приложения за время сердечного цикла.

Все ткани и органы, весь организм – однородная проводящая среда (с одинаковым удельным сопротивлением).

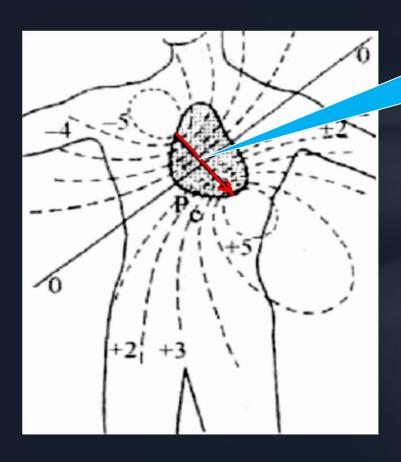



Теория отведений Эйнтховена.

При записи кардиограммы регистрируется разность потенциалов на поверхности тела.

Пары точек на теле человека между которыми измеряются разности биопотенциалов, в физиологии принято называть «отведениями».

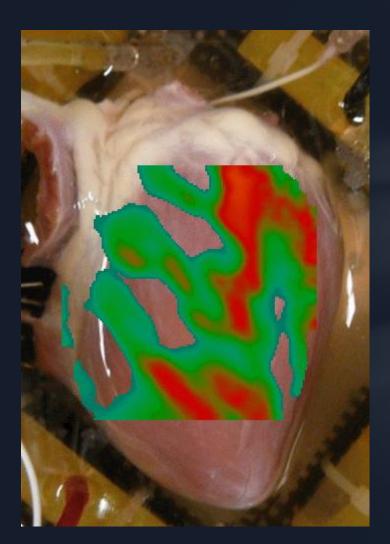
Три стандартных отведения

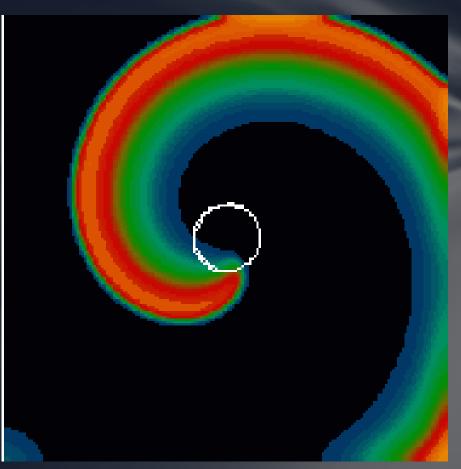


 $\mathbf{U_{I:}} \mathbf{U_{II:}} \mathbf{U_{III}} = \mathbf{p_{cI:}} \mathbf{p_{cII:}} \mathbf{p_{cIII}}$

Отношение разности потенциалов в различных отведениях равно отношению проекций вектора дипольного момента на стороны треугольника.

Эквипотенциальные линии поля диполя сердца

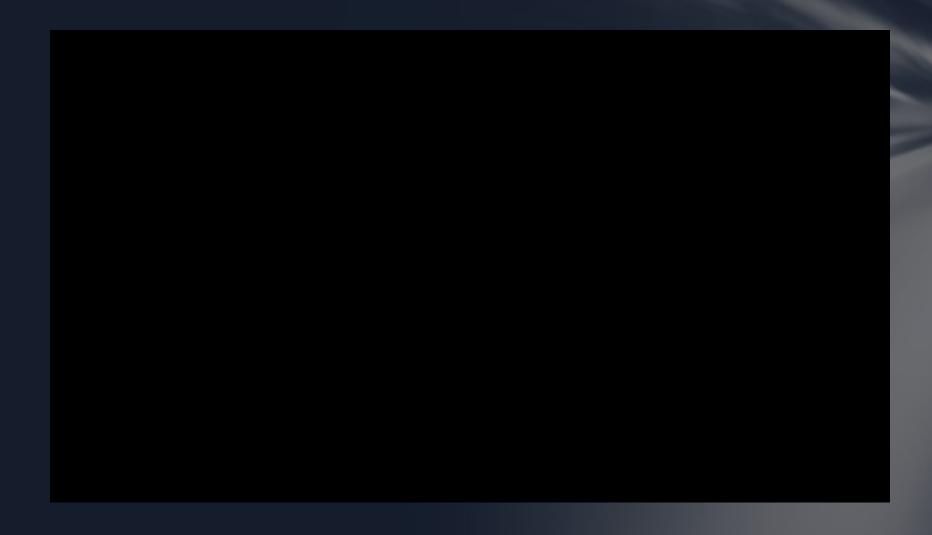

Электрическая ось сердца


Положение вектора P_c в момент времени, когда дипольный момент максимален.

Значения дипольного момента рс

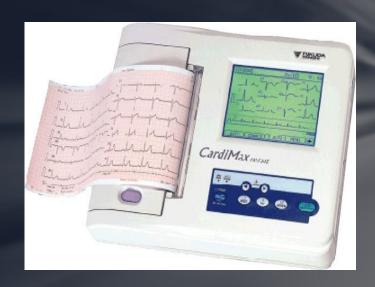
Объект	Масса сердца, г	Масса тела, кг	P _{c,} MA•CM
Крыса	1,10	0,277	0,107
Собака	108	14,2	1,63
Человек	300	71,5	2,32

Визуализация электропотенциала миокарда

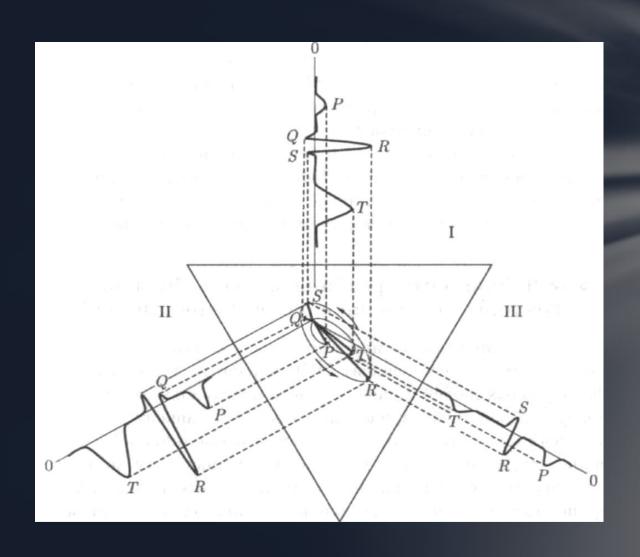

Модель Курамото

$$\frac{d\theta_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_j - \theta_i), \qquad i = 1...N,$$

(蔵本 由紀 Kuramoto Yoshiki)


Синхронизация

Кардиографы




Электрокардиограмма здорового человека

Нормальная ЭКГ в трех стандартны отведениях

Реальная электрокардиограмма

Факторы, определяющие особенности ЭКГ у отдельного человека:

- •положение сердца в грудной клетке
- •положение тела
- •дыхание
- •физические нагрузки

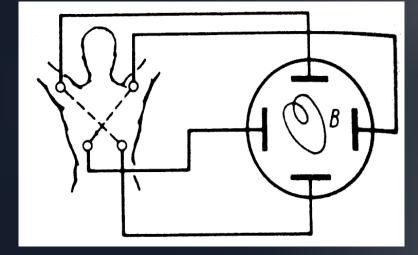
Направление электрической оси сердца

Если угол α имеет значение:

в пределах от 40° до 70° – положение электрической оси сердца считается нормальным

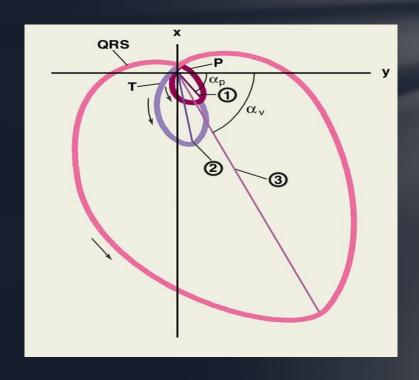
близкое к 0° – положение электрической оси сердца обозначается как горизонтальное, и ЭКГ характеризуется высокими амплитудами зубцов в I отведении;

близкое к 90° – положение обозначается как вертикальное; зубцы ЭКГ будут наименьшими в I отведении.


Вектор-кардиография

Вектор-кардиография — метод пространственно-количественного исследования электрического поля сердца в процессе кардиоцикла.

Методика получения:


Напряжение от двух взаимно перпендикулярных отведений подают на взаимно перпендикулярные пластины осциллографа. При этом на экране получаются изображение, состоящее из двух петель — большой и

малой.

Вектор-кардиограмма

- есть геометрическое место точек, соответствующих концу вектора р_с, положение которого изменяется за время сердечного цикла.

Реография

Реография — метод исследования кровенаполнения органов, основанный на графической регистрации изменения полного электрического сопротивления тканей при изменении кровенаполнения этих тканей.

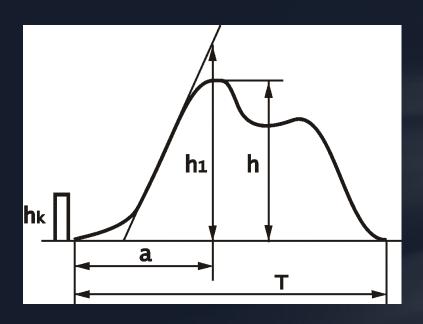
Полное электрическое сопротивление (импеданс) – есть сумма активного и реактивного (емкостного) сопротивлений.

$$Z = R + iX$$

Активным сопротивлением обладают тканевые жидкости и цитоплазма, а емкостное сопротивление живых тканей обусловлено поляризацией биомембран.

Физические основы реографии

Для получения реограммы через тело пациента пропускают переменный ток частотой 50-100 кГц, малой силы (не более 10 мкА), создаваемый специальным генератором.


Метод основан на установленной А.А. Кедровым пропорциональной зависимости между изменениями импеданса ΔZ по отношению к его исходной величине Z и приростом объема ΔV по отношению к исходному объему V исследуемой части тела за счет ее кровенаполнения:

$$\frac{\Delta V}{V} = -\frac{\Delta Z}{Z}$$

Полное электрическое сопротивление тканей тем меньше, чем больше приток крови.

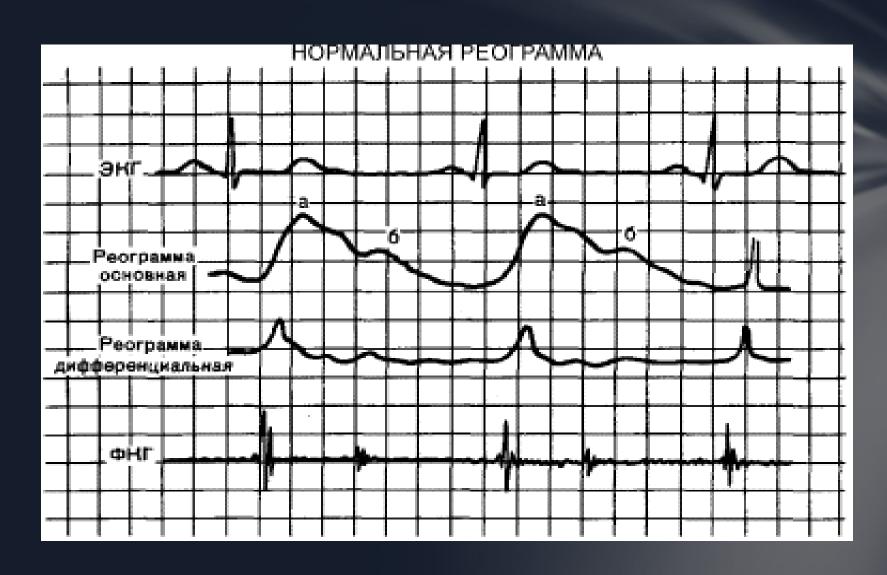
Физические основы реографии

Реограмма – кривая, отражающая пульсовые колебания электрического сопротивления.

h – амплитуда реограммы
h₁ – амплитуда для расчета
ударного объема крови
а – длительность восходящей
части реограммы
T– период реограммы
h_к – высота калибровочного
импульса

При увеличении кровенаполнения имеет место возрастание амплитуды кривой и наоборот, т.е. динамика импеданса регистрируется в обратной полярности.

Показатели реограммы:

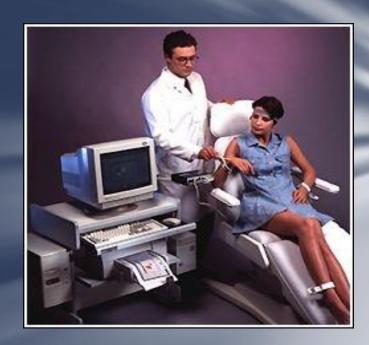

• реографический индекс (РИ) — отношение амплитуды реограммы h к величине стандартного калибровочного импульса hк.

РИ характеризует величину пульсового кровенаполнения.

• время восходящей части волны а — характеризует полное раскрытие сосуда.

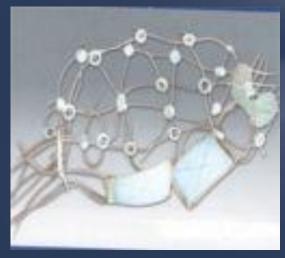
• период реограммы T – длительность сердечного цикла

Вид стандартной реограммы


Виды реографии:

- Реоэнцефалография (РЭГ) исследование кровенаполнения сосудов головного мозга.
- Реовазография исследование заболеваний периферических сосудов, сопровождающихся изменениями их тонуса, эластичности, сужением или полной закупоркой артерий.
- Реогепатография исследование кровотока печени. Позволяет судить о процессах, происходящих в сосудистой системе печени: кровенаполнении, очагах поражения, особенно при остром и хроническом гепатите и циррозе.
- **Реомиография** исследование кровенаполнения работающих мышц.

Реографы



Электроды для реографии

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Обязательная:

Ремизов А.Н. Медицинская и биологическая физика: учебник. -М.: Дрофа, 2007.-

Дополнительная:

Федорова В.Н. Краткий курс медицинской и биологической физики с элементами реабилитологии: учебное пособие. -М.: Физматлит, 2005.-

Электронные ресурсы:

ЭБС КрасГМУ

Ресурсы интернет

Электронная медицинская библиотека. Т.4. Физика и биофизика.- М.: Русский врач, 2004.

Контрольные вопросы

- 1. Какой орган человека создает наибольший электрический потенциал?
- 2. Как изменится амплитуда реограммы при охлаждении органа?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА:

Обязательная:

- 1. Курс общей физики. В 4 томах. Том 2. Электричество и магнетизм. Волны. Оптика: Савельев И.В., М.: КноРус, 2012
- 2. Медицинская и биологическая физика: учебник., Ремизов А.Н. [и др.], М.: Дрофа, 2010
- 3. Курс физики : учебное пособие Трофимова, Т. И., М.: Академия, 2010

Дополнительная:

- 1. Краткий курс медицинской и биологической физики с элементами реабилитологии. Лекции и семинары: учебное пособие. Федорова В.Н., Степанова Л.А. М.: Физмат-лит, 2005
- 2. Руководство к лабораторным работам по медицинской и биологической физике для самостоятельной работы студентов Барцева О.Д. [и др.] Красноярск: Литера-принт, 2009