

ФАРМАЦЕВТИЧЕСКИЙ КОЛЛЕДЖ

Тема: «Многоатомные спирты»

План лекции

- 1. Многоатомные спирты
- 2. Номенклатура многоатомных спиртов
- 3. Физические свойства
- 4. Получение многоатомных спиртов
- 5. Применение многоатомных спиртов

Многоатомные спирты (полиспирты, полиолы) – органические соединения, в молекулах которых содержится несколько гидроксильных групп (-OH), соединённых с углеводородным радикалом.

Многоатомные спирты - соединения, у которых две или несколько гидроксильных групп расположены у соседних атомов углерода.

В названиях многоатомных спиртов (полиолов) положение и число гидроксильных групп указывают соответствующими цифрами и суффиксами -диол (две ОН-группы), -триол (три ОН-группы)

Этиленгликоль - сиропообразная, вязкая бесцветная жидкость, $t_{\text{пл}} = 11,5^{\circ}\text{C}$, $t_{\text{кип}} = 197,6^{\circ}\text{C}$, гигроскопичен, смешивается с водой и этиловым спиртом в любых отношениях, сильно понижает температуру замерзания воды. Этиленгликоль широко используется в системах охлаждения двигателей в качестве антифриза (от анг. to freeze -«замерзать») – вещества с низкой температурой замерзания, заменяющего воду в радиаторах автомобильных и авиационных моторов в зимнее время. Антифризы также замедляют ее испарение летом.

Этиленгликоль используется для производства синтетического волокна полиэфирного волокна — лавсана.

Этиленгликоль очень токсичен! Это сильный яд!

Этиленгликоль вызывает длительное угрожающее жизни угнетение центральной нервной системы и поражение почек. Продуктами его превращения в организме являются щавелевая кислота и другие не менее ядовитые соединения. Он имеет спиртовой запах, в связи, с чем может быть принят за этиловый спирт и стать причиной тяжелых отравлений.

Глицерин — бесцветная, вязкая, сиропообразная жидкость, сладкая на вкус. Не ядовит. Глицерин не имеет запаха, его $t_{\rm пл} = 18^{\rm 0}{\rm C}$, $t_{\rm кип} = 290^{\rm 0}{\rm C}$. Глицерин гигроскопичен, хорошо смешивается с водой и этанолом. На этом свойстве основано применение глицерина в косметической промышленности, где глицерин используется для увлажнения кожи.

Абсолютно чистый безводный глицерин затвердевает при +18°C, но получить его в твердом виде чрезвычайно сложно.

Глицерин широко распространен в живой природе. Он играет важную роль в процессах обмена в организмах животных, входит в состав большинства липидов — жиров и других веществ, содержащихся в животных и растительных тканях и выполняющих в живых организмах важнейшие функции. Благодаря этим свойствам глицерин является важным компонентов многих пищевых продуктов, кремов,

......

косметических средств.

Кислотные свойства спиртов

1. С щелочными металлами

HO-CH₂-CH₂-OH + 2NaOH → NaO-CH₂-CH₂-ONa + 2H₂O

2. С гидроксидом меди(II) - <u>качественная</u> реакция!

При взаимодействии многоатомного спирта с гидроксидом меди (II) в щелочной среде образуется темно-синий раствор (гликолят меди и глицерат меди).

$$^{
m CH_2-OH}_{
m 2}$$
 $^{
m NaOH}_{
m CH_2-O}$ $^{
m NaOH}_{
m CH_2-O}$ $^{
m CH_2-O}_{
m CH_2}$ $^{
m H}_{
m O-CH_2}$ $^{
m CH_2-O}_{
m CH_2-O}$ $^{
m CH_2}_{
m CH_2-O}$ $^{
m CH_2}_{
m CH_2}$ $^{
m H}_{
m 2}$ $^{
m 2}_{
m 1}$ $^{
m 2}_{
m 2}$ $^{
m 2}_{
m$

$$CH_2$$
-OH H

2 CH -OH $+ Cu(OH)_2$ $\longrightarrow CH$ -O O - $CH_2 + 2H_2O$
 CH_2 -OH CH_2 -OH CH_2 -OH CH_2 -ОН CH_2 -

Основные свойства

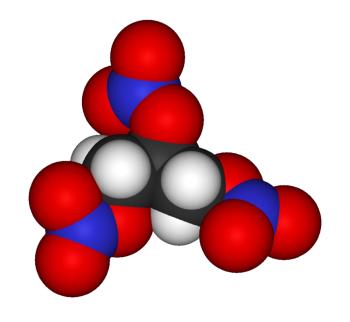
1. С галогенводородными кислотами

При взаимодействии этиленгликоля с галогеноводородами (HCl, HBr) одна гидроксильная группа замещается на галоген.

Вторая гидроксогруппа замещается труднее, под действием PCl₅.

2. Реакция этерификации (с органическими и неорганическими кислотами)

Многоатомные спирты взаимодействуют с органическими и неорганическими кислотами с образованием сложных эфиров.


С карбоновыми кислотами глицерин образует сложные эфиры – жиры и масла.

При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кислоты образуется нитроглицерин

$$CH_2-CH-CH_2 + 3HONO_2 \xrightarrow{H_2SO_4} CH_2-CH-CH_2 + 3H_2O$$
 OH OH OH OH OO OO O ПОТИЦЕРИН NO2 NO2 NO2 ТРИНИТРАТ ГЛИЦЕРИНА (НИТРОГЛИЦЕРИН)

Тринитрат глицерина (тривиальное название –

нитроглицерин) — тяжелая маслянистая жидкость, известное взрывчатое вещество (взрывается от легкого сотрясения и нагревания). И одновременно лекарственный препарат (спиртовые растворы его не взрываются): 1% спиртовой раствор нитроглицерина применяется в медицине в качестве средства расширяющего сосуды сердца

Получение двухатомных спиртов в промышленности

1. Каталитическая гидратация оксида этилена (получение этиленгликоля)

$$CH_2-CH_2+H_2O \xrightarrow{200^0, Ag} CH_2-CH_2$$
OH OH

2. Щелочной гидролиз дигалогеналканов

Получение двухатомных спиртов в лаборатории

1. Окисление алкенов (реакция Вагнера)

2. Восстановление поликарбонильных соединений

$$O=CH-CH=O+H_2 \xrightarrow{t, kar} CH_2-CH_2$$
 диальдегид OH OH этиленгликоль

1. Окисление алкенов (реакция Вагнера)

2. Восстановление поликарбонильных соединений

$$O=CH-CH=O+H_2 \xrightarrow{t, kar} CH_2-CH_2$$
 диальдегид OH OH этиленгликоль

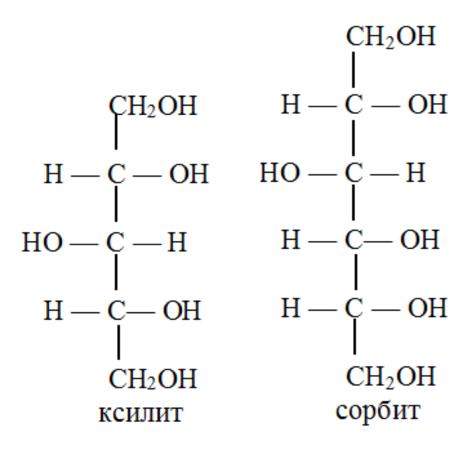
Получение трехатомных спиртов в промышленности

1. Щелочной гидролиз природных жиров (омыление жиров (триглицеридов))

2. Кислотный гидролиз животных жиров или растительных масел

$$CH_2$$
-O-CO- $C_{17}H_{35}$ CH_2 -OH
 CH_2 -O-CO- $C_{17}H_{35}$ + $3H_2$ O $\xrightarrow{H^+, t}$ CH_2 -OH + $3C_{17}H_{35}$ COOH
 CH_2 -O-CO- $C_{17}H_{35}$ CH_2 -OH
 CH_2 -OH

3. Синтез из пропилена


$$CH_2$$
= CH - CH_3 $\xrightarrow{+O_2}$ CH_2 = CH - CH_2 \xrightarrow{O} $\xrightarrow{+H_2}$ \xrightarrow{O} \xrightarrow{A} \xrightarrow{H} \xrightarrow{O} \xrightarrow{A} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{H} \xrightarrow{O} $\xrightarrow{$

Этиленгликоль используется главным образом для производства лавсана и для приготовления антифризов - водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время), а также, как сырье в органическом синтезе.

Сорбит (сорбитол), также известный как глюцит - шестиатомный спирт, обладающий сладким вкусом. Используется в производстве аскорбиновой кислоты. Зарегистрирован в качестве пищевой добавки как E420. Сорбит часто применяется как заменитель сахара для больных диабетом и людей страдающих от ожирения, его можно встретить в диетических продуктах и диетических напитках. В естественном виде встречается в косточковых плодах.

Ксилит — сладкие кристаллы, хорошо растворимые в воде. Ксилит используется при изготовлении продуктов питания для диабетиков, а также при производстве алкидных смол, олиф и поверхностно-активных веществ.

